{"title":"将茶叶加工废料升级再造为从昆布茶中提取的生物活性纤维素复合材料,用于伤口敷料。","authors":"Baishali Dey, Sivaraman Jayaraman, Paramasivan Balasubramanian","doi":"10.1007/s13205-024-04095-3","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the study was to utilize kombucha-derived bacterial cellulosic sheet [<i>KBC</i>], formed as a by-product of fermented, sugared black tea (in the presence of a symbiotic culture of bacteria and yeast), for potential wound dressing applications. <i>KBC</i> was functionalized using aqueous and ethanolic extracts of different phytochemical agents using two ex-situ methods- casting and impregnation. It was observed that casted <i>KBC</i> functionalized with ethanolic extract of Turmeric (1.2% w/w) yielded a maximum zone of inhibition (24.37 ± 0.42 mm) against <i>Pseudomonas aeruginosa</i>. The hemocompatibility test confirmed the composite's biocompatible nature as the percentage hemocompatibility was found to be less than 5%. The MTT assay established its viability and anti-cancerous properties with Turmeric extract loaded KBC showing higher efficiency compared to Tulsi extract. FTIR analysis and SEM imaging confirmed the functionalization of cellulose sheets and the change in morphology. The contact angle analysis showed improved hydrophilic properties of the sheets for absorbing wound exudates, and the water absorption study revealed maximum absorptivity of up to 321.20 ± 6.23%. Thus, it can be concluded from the study that tea processing waste can be reused to produce a value-added product that can act as an efficient, cost-effective biomaterial for wound dressing applications.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 10","pages":"253"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Upcycling of tea processing waste into kombucha-derived bioactive cellulosic composite for prospective wound dressing action.\",\"authors\":\"Baishali Dey, Sivaraman Jayaraman, Paramasivan Balasubramanian\",\"doi\":\"10.1007/s13205-024-04095-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the study was to utilize kombucha-derived bacterial cellulosic sheet [<i>KBC</i>], formed as a by-product of fermented, sugared black tea (in the presence of a symbiotic culture of bacteria and yeast), for potential wound dressing applications. <i>KBC</i> was functionalized using aqueous and ethanolic extracts of different phytochemical agents using two ex-situ methods- casting and impregnation. It was observed that casted <i>KBC</i> functionalized with ethanolic extract of Turmeric (1.2% w/w) yielded a maximum zone of inhibition (24.37 ± 0.42 mm) against <i>Pseudomonas aeruginosa</i>. The hemocompatibility test confirmed the composite's biocompatible nature as the percentage hemocompatibility was found to be less than 5%. The MTT assay established its viability and anti-cancerous properties with Turmeric extract loaded KBC showing higher efficiency compared to Tulsi extract. FTIR analysis and SEM imaging confirmed the functionalization of cellulose sheets and the change in morphology. The contact angle analysis showed improved hydrophilic properties of the sheets for absorbing wound exudates, and the water absorption study revealed maximum absorptivity of up to 321.20 ± 6.23%. Thus, it can be concluded from the study that tea processing waste can be reused to produce a value-added product that can act as an efficient, cost-effective biomaterial for wound dressing applications.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"14 10\",\"pages\":\"253\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04095-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04095-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Upcycling of tea processing waste into kombucha-derived bioactive cellulosic composite for prospective wound dressing action.
The aim of the study was to utilize kombucha-derived bacterial cellulosic sheet [KBC], formed as a by-product of fermented, sugared black tea (in the presence of a symbiotic culture of bacteria and yeast), for potential wound dressing applications. KBC was functionalized using aqueous and ethanolic extracts of different phytochemical agents using two ex-situ methods- casting and impregnation. It was observed that casted KBC functionalized with ethanolic extract of Turmeric (1.2% w/w) yielded a maximum zone of inhibition (24.37 ± 0.42 mm) against Pseudomonas aeruginosa. The hemocompatibility test confirmed the composite's biocompatible nature as the percentage hemocompatibility was found to be less than 5%. The MTT assay established its viability and anti-cancerous properties with Turmeric extract loaded KBC showing higher efficiency compared to Tulsi extract. FTIR analysis and SEM imaging confirmed the functionalization of cellulose sheets and the change in morphology. The contact angle analysis showed improved hydrophilic properties of the sheets for absorbing wound exudates, and the water absorption study revealed maximum absorptivity of up to 321.20 ± 6.23%. Thus, it can be concluded from the study that tea processing waste can be reused to produce a value-added product that can act as an efficient, cost-effective biomaterial for wound dressing applications.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.