{"title":"用于改善生物吸收的米拉贝琼纳米结构脂质载体的研究:配方、统计优化和体内评估","authors":"Pranav Shah, Mansi Patel, Yashwini Kansara, Bhavin Vyas, Pintu Prajapati, Madhulika Pradhan, Sanyog Jain","doi":"10.1208/s12249-024-02944-1","DOIUrl":null,"url":null,"abstract":"<div><p>Overactive bladder (OAB) is a usual medical syndrome that affects the bladder, and Mirabegron (MBG) is preferred medicine for its control. Currently, available marketed formulations (MYRBETRIQ® granules and MYRBETRIQ® ER tablets) suffer from low bioavailability (29–35%) hampering their therapeutic effectiveness and compromising patient compliance. By creating MBG nanostructured lipid carriers (MBG-NLCs) for improved systemic availability and drug release, specifically in oral administration of OAB treatment, this study aimed to address these issues. MBG-NLCs were fabricated using a hot-melt ultrasonication technique. MBG-GMS; MBG-oleic acid interaction was assessed by in silico molecular docking. QbD relied on the concentration of Span 80 (X1) and homogenizer speed (X2) as critical material attribute (CMA) and critical process parameter (CPP) respectively, while critical quality attributes (CQA) such as particle size (Y1) and cumulative drug release at 24 h (Y2) were estimated as dependent variables. 32 factorial design was utilized to investigate the interconnection in variables that are dependent and independents. Optimized MBG-NLCs with a particle size of 194.4 ± 2.25 nm were suitable for lymphatic uptake. A PDI score of 0.275 ± 0.02 and zeta potential of -36.2 ± 0.721 mV indicated a uniform monodisperse system with stable dispersion properties. MBG-NLCs exhibited entrapment efficiency of 77.3 ± 1.17% and a sustained release in SIF of 94.75 ± 1.60% for 24 h. MBG-NLCs exhibited the Higuchi model with diffusion as a release mechanism. A pharmacokinetic study in Wistar rats exhibited a 1.67-fold higher bioavailability as compared to MBG suspension. Hence, MBG-NLCs hold promise for treating OAB by improving MBG’s oral bio absorption.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Mirabegron-loaded Nanostructured Lipid Carriers for Improved Bioabsorption: Formulation, Statistical Optimization, and In-Vivo Evaluation\",\"authors\":\"Pranav Shah, Mansi Patel, Yashwini Kansara, Bhavin Vyas, Pintu Prajapati, Madhulika Pradhan, Sanyog Jain\",\"doi\":\"10.1208/s12249-024-02944-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Overactive bladder (OAB) is a usual medical syndrome that affects the bladder, and Mirabegron (MBG) is preferred medicine for its control. Currently, available marketed formulations (MYRBETRIQ® granules and MYRBETRIQ® ER tablets) suffer from low bioavailability (29–35%) hampering their therapeutic effectiveness and compromising patient compliance. By creating MBG nanostructured lipid carriers (MBG-NLCs) for improved systemic availability and drug release, specifically in oral administration of OAB treatment, this study aimed to address these issues. MBG-NLCs were fabricated using a hot-melt ultrasonication technique. MBG-GMS; MBG-oleic acid interaction was assessed by in silico molecular docking. QbD relied on the concentration of Span 80 (X1) and homogenizer speed (X2) as critical material attribute (CMA) and critical process parameter (CPP) respectively, while critical quality attributes (CQA) such as particle size (Y1) and cumulative drug release at 24 h (Y2) were estimated as dependent variables. 32 factorial design was utilized to investigate the interconnection in variables that are dependent and independents. Optimized MBG-NLCs with a particle size of 194.4 ± 2.25 nm were suitable for lymphatic uptake. A PDI score of 0.275 ± 0.02 and zeta potential of -36.2 ± 0.721 mV indicated a uniform monodisperse system with stable dispersion properties. MBG-NLCs exhibited entrapment efficiency of 77.3 ± 1.17% and a sustained release in SIF of 94.75 ± 1.60% for 24 h. MBG-NLCs exhibited the Higuchi model with diffusion as a release mechanism. A pharmacokinetic study in Wistar rats exhibited a 1.67-fold higher bioavailability as compared to MBG suspension. Hence, MBG-NLCs hold promise for treating OAB by improving MBG’s oral bio absorption.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"25 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-024-02944-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02944-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Investigation of Mirabegron-loaded Nanostructured Lipid Carriers for Improved Bioabsorption: Formulation, Statistical Optimization, and In-Vivo Evaluation
Overactive bladder (OAB) is a usual medical syndrome that affects the bladder, and Mirabegron (MBG) is preferred medicine for its control. Currently, available marketed formulations (MYRBETRIQ® granules and MYRBETRIQ® ER tablets) suffer from low bioavailability (29–35%) hampering their therapeutic effectiveness and compromising patient compliance. By creating MBG nanostructured lipid carriers (MBG-NLCs) for improved systemic availability and drug release, specifically in oral administration of OAB treatment, this study aimed to address these issues. MBG-NLCs were fabricated using a hot-melt ultrasonication technique. MBG-GMS; MBG-oleic acid interaction was assessed by in silico molecular docking. QbD relied on the concentration of Span 80 (X1) and homogenizer speed (X2) as critical material attribute (CMA) and critical process parameter (CPP) respectively, while critical quality attributes (CQA) such as particle size (Y1) and cumulative drug release at 24 h (Y2) were estimated as dependent variables. 32 factorial design was utilized to investigate the interconnection in variables that are dependent and independents. Optimized MBG-NLCs with a particle size of 194.4 ± 2.25 nm were suitable for lymphatic uptake. A PDI score of 0.275 ± 0.02 and zeta potential of -36.2 ± 0.721 mV indicated a uniform monodisperse system with stable dispersion properties. MBG-NLCs exhibited entrapment efficiency of 77.3 ± 1.17% and a sustained release in SIF of 94.75 ± 1.60% for 24 h. MBG-NLCs exhibited the Higuchi model with diffusion as a release mechanism. A pharmacokinetic study in Wistar rats exhibited a 1.67-fold higher bioavailability as compared to MBG suspension. Hence, MBG-NLCs hold promise for treating OAB by improving MBG’s oral bio absorption.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.