{"title":"Rab3B 蛋白:细胞功能、调控机制和作为癌症治疗靶点的潜力》(Cellular Functions, Regulatory Mechanisms, and Potential as a Cancer Therapy Target.","authors":"Jiayi Xu, Huhu Zhang, Lina Yang","doi":"10.1007/s12013-024-01549-6","DOIUrl":null,"url":null,"abstract":"<p><p>RAB3 proteins, a pivotal subgroup within the Rab protein family, are known to be highly expressed in brain and endocrine gland tissues, with detectable levels also observed in exocrine glands, adipose tissue, and other peripheral tissues. They play an indispensable role in the trafficking of cellular products from the endoplasmic reticulum (ER) to the Golgi apparatus and ultimately to secretory vesicles, participating in vesicle transport, mediating cell membrane adhesion, and facilitating membrane fusion during exocytosis. Among these, Rab3B, a specific subtype of RAB3, is a low-molecular-weight (approximately 25 kD) GTP-binding protein (GTPase) characterized by its typical GTPase fold, composed of seven β-strands (six parallel and one antiparallel) surrounded by six α-helices. Previous studies have proved the significant roles of Rab3B in vesicle transport and hormone trafficking. However, its involvement in cancer remains largely unexplored. This review aims to dig into the potential mechanisms of Rab3B in various cancers, including hepatocellular cancer, lung adenocarcinoma, pancreatic cancer, breast cancer, prostate cancer, neuroblastoma and cervical cancer. Given its pivotal functions and underexplored status in oncology, Rab3B stands out as a promising target for both diagnosis and therapy in cancer treatment, with investigations into its biological mechanisms in tumorigenesis offering significant potential to advance future diagnostic and therapeutic strategies across various malignancies.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rab3B Proteins: Cellular Functions, Regulatory Mechanisms, and Potential as a Cancer Therapy Target.\",\"authors\":\"Jiayi Xu, Huhu Zhang, Lina Yang\",\"doi\":\"10.1007/s12013-024-01549-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RAB3 proteins, a pivotal subgroup within the Rab protein family, are known to be highly expressed in brain and endocrine gland tissues, with detectable levels also observed in exocrine glands, adipose tissue, and other peripheral tissues. They play an indispensable role in the trafficking of cellular products from the endoplasmic reticulum (ER) to the Golgi apparatus and ultimately to secretory vesicles, participating in vesicle transport, mediating cell membrane adhesion, and facilitating membrane fusion during exocytosis. Among these, Rab3B, a specific subtype of RAB3, is a low-molecular-weight (approximately 25 kD) GTP-binding protein (GTPase) characterized by its typical GTPase fold, composed of seven β-strands (six parallel and one antiparallel) surrounded by six α-helices. Previous studies have proved the significant roles of Rab3B in vesicle transport and hormone trafficking. However, its involvement in cancer remains largely unexplored. This review aims to dig into the potential mechanisms of Rab3B in various cancers, including hepatocellular cancer, lung adenocarcinoma, pancreatic cancer, breast cancer, prostate cancer, neuroblastoma and cervical cancer. Given its pivotal functions and underexplored status in oncology, Rab3B stands out as a promising target for both diagnosis and therapy in cancer treatment, with investigations into its biological mechanisms in tumorigenesis offering significant potential to advance future diagnostic and therapeutic strategies across various malignancies.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01549-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01549-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Rab3B Proteins: Cellular Functions, Regulatory Mechanisms, and Potential as a Cancer Therapy Target.
RAB3 proteins, a pivotal subgroup within the Rab protein family, are known to be highly expressed in brain and endocrine gland tissues, with detectable levels also observed in exocrine glands, adipose tissue, and other peripheral tissues. They play an indispensable role in the trafficking of cellular products from the endoplasmic reticulum (ER) to the Golgi apparatus and ultimately to secretory vesicles, participating in vesicle transport, mediating cell membrane adhesion, and facilitating membrane fusion during exocytosis. Among these, Rab3B, a specific subtype of RAB3, is a low-molecular-weight (approximately 25 kD) GTP-binding protein (GTPase) characterized by its typical GTPase fold, composed of seven β-strands (six parallel and one antiparallel) surrounded by six α-helices. Previous studies have proved the significant roles of Rab3B in vesicle transport and hormone trafficking. However, its involvement in cancer remains largely unexplored. This review aims to dig into the potential mechanisms of Rab3B in various cancers, including hepatocellular cancer, lung adenocarcinoma, pancreatic cancer, breast cancer, prostate cancer, neuroblastoma and cervical cancer. Given its pivotal functions and underexplored status in oncology, Rab3B stands out as a promising target for both diagnosis and therapy in cancer treatment, with investigations into its biological mechanisms in tumorigenesis offering significant potential to advance future diagnostic and therapeutic strategies across various malignancies.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.