{"title":"高效 PROTAC-ing:将 PROTAC 与信号通路抑制剂结合使用。","authors":"Yuri Shibata","doi":"10.1016/j.tibs.2024.09.002","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted protein degradation is an innovative therapeutic modality for the degradation of disease-causing proteins. In a recent report combining high-throughput screening of small-molecule compounds and biochemical analyses, Mori et al. identified certain inhibitors of cellular pathways, such as PARylation and proteostatic pathways, which enhance proteolysis-targeting chimera (PROTAC)-induced protein degradation.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient PROTAC-ing: combinational use of PROTACs with signaling pathway inhibitors.\",\"authors\":\"Yuri Shibata\",\"doi\":\"10.1016/j.tibs.2024.09.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeted protein degradation is an innovative therapeutic modality for the degradation of disease-causing proteins. In a recent report combining high-throughput screening of small-molecule compounds and biochemical analyses, Mori et al. identified certain inhibitors of cellular pathways, such as PARylation and proteostatic pathways, which enhance proteolysis-targeting chimera (PROTAC)-induced protein degradation.</p>\",\"PeriodicalId\":11,\"journal\":{\"name\":\"ACS Chemical Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibs.2024.09.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tibs.2024.09.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Efficient PROTAC-ing: combinational use of PROTACs with signaling pathway inhibitors.
Targeted protein degradation is an innovative therapeutic modality for the degradation of disease-causing proteins. In a recent report combining high-throughput screening of small-molecule compounds and biochemical analyses, Mori et al. identified certain inhibitors of cellular pathways, such as PARylation and proteostatic pathways, which enhance proteolysis-targeting chimera (PROTAC)-induced protein degradation.
期刊介绍:
ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology.
The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies.
We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.