{"title":"猴面包树通过影响与白细胞介素 4、13 和阿尔茨海默病细胞外基质组织相关的信号通路来提供神经保护:基于蛋白质组学的视角","authors":"Akhina Palollathil , Mohd Altaf Najar , S. Amrutha , Ravishankar Pervaje , Prashant Kumar Modi , Thottethodi Subrahmanya Keshava Prasad","doi":"10.1016/j.neuint.2024.105864","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease, a prevalent neurodegenerative disorder in the elderly, is characterized by the accumulation of senile plaques and neurofibrillary tangles, triggering oxidative stress, neuroinflammation, and neuronal apoptosis. Current therapies focus on symptomatic treatment rather than targeting the underlying disease-modifying molecular mechanisms and are often associated with significant side effects. <em>Bacopa monnieri</em>, a traditional Indian herb with nootropic properties, has shown promise in neurological disorder treatment from ancient times. However, its mechanisms of action in Alzheimer's disease remain elusive. In this study, a cellular model for Alzheimer's disease was created by treating differentiated IMR-32 cells with beta-amyloid, 1–42 peptide (Aβ<sub>42</sub>). Additionally, a recovery model was established through co-treatment with <em>Bacopa monnieri</em> to explore its protective mechanism. Co-treatment with <em>Bacopa monnieri</em> extract recovered Aβ<sub>42</sub> induced damage as evidenced by the decreased apoptosis and reduced reactive oxygen species production. Mass spectrometry-based quantitative proteomic analysis identified 21,674 peptides, corresponding to 3626 proteins from the Alzheimer's disease model. The proteins dysregulated by Aβ<sub>42</sub> were implicated in cellular functions, such as negative regulation of cell proliferation and microtubule cytoskeleton organization. The enriched pathways include extracellular matrix organization and interleukin-4 and interleukin-13 signaling. <em>Bacopa monnieri</em> co-treatment showed remarkable restoration of Aβ<sub>42</sub> altered proteins, including <em>FOSL1,</em> and <em>TDO2</em>. The protein-protein interaction network analysis of <em>Bacopa monnieri</em> restored proteins identified the hub gene involved in Alzheimer's disease. The findings from this study may open up new avenues for creating innovative therapeutic approaches for Alzheimer's disease.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105864"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacopa monnieri confers neuroprotection by influencing signaling pathways associated with interleukin 4, 13 and extracellular matrix organization in Alzheimer's disease: A proteomics-based perspective\",\"authors\":\"Akhina Palollathil , Mohd Altaf Najar , S. Amrutha , Ravishankar Pervaje , Prashant Kumar Modi , Thottethodi Subrahmanya Keshava Prasad\",\"doi\":\"10.1016/j.neuint.2024.105864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alzheimer's disease, a prevalent neurodegenerative disorder in the elderly, is characterized by the accumulation of senile plaques and neurofibrillary tangles, triggering oxidative stress, neuroinflammation, and neuronal apoptosis. Current therapies focus on symptomatic treatment rather than targeting the underlying disease-modifying molecular mechanisms and are often associated with significant side effects. <em>Bacopa monnieri</em>, a traditional Indian herb with nootropic properties, has shown promise in neurological disorder treatment from ancient times. However, its mechanisms of action in Alzheimer's disease remain elusive. In this study, a cellular model for Alzheimer's disease was created by treating differentiated IMR-32 cells with beta-amyloid, 1–42 peptide (Aβ<sub>42</sub>). Additionally, a recovery model was established through co-treatment with <em>Bacopa monnieri</em> to explore its protective mechanism. Co-treatment with <em>Bacopa monnieri</em> extract recovered Aβ<sub>42</sub> induced damage as evidenced by the decreased apoptosis and reduced reactive oxygen species production. Mass spectrometry-based quantitative proteomic analysis identified 21,674 peptides, corresponding to 3626 proteins from the Alzheimer's disease model. The proteins dysregulated by Aβ<sub>42</sub> were implicated in cellular functions, such as negative regulation of cell proliferation and microtubule cytoskeleton organization. The enriched pathways include extracellular matrix organization and interleukin-4 and interleukin-13 signaling. <em>Bacopa monnieri</em> co-treatment showed remarkable restoration of Aβ<sub>42</sub> altered proteins, including <em>FOSL1,</em> and <em>TDO2</em>. The protein-protein interaction network analysis of <em>Bacopa monnieri</em> restored proteins identified the hub gene involved in Alzheimer's disease. The findings from this study may open up new avenues for creating innovative therapeutic approaches for Alzheimer's disease.</div></div>\",\"PeriodicalId\":398,\"journal\":{\"name\":\"Neurochemistry international\",\"volume\":\"180 \",\"pages\":\"Article 105864\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemistry international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0197018624001918\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018624001918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bacopa monnieri confers neuroprotection by influencing signaling pathways associated with interleukin 4, 13 and extracellular matrix organization in Alzheimer's disease: A proteomics-based perspective
Alzheimer's disease, a prevalent neurodegenerative disorder in the elderly, is characterized by the accumulation of senile plaques and neurofibrillary tangles, triggering oxidative stress, neuroinflammation, and neuronal apoptosis. Current therapies focus on symptomatic treatment rather than targeting the underlying disease-modifying molecular mechanisms and are often associated with significant side effects. Bacopa monnieri, a traditional Indian herb with nootropic properties, has shown promise in neurological disorder treatment from ancient times. However, its mechanisms of action in Alzheimer's disease remain elusive. In this study, a cellular model for Alzheimer's disease was created by treating differentiated IMR-32 cells with beta-amyloid, 1–42 peptide (Aβ42). Additionally, a recovery model was established through co-treatment with Bacopa monnieri to explore its protective mechanism. Co-treatment with Bacopa monnieri extract recovered Aβ42 induced damage as evidenced by the decreased apoptosis and reduced reactive oxygen species production. Mass spectrometry-based quantitative proteomic analysis identified 21,674 peptides, corresponding to 3626 proteins from the Alzheimer's disease model. The proteins dysregulated by Aβ42 were implicated in cellular functions, such as negative regulation of cell proliferation and microtubule cytoskeleton organization. The enriched pathways include extracellular matrix organization and interleukin-4 and interleukin-13 signaling. Bacopa monnieri co-treatment showed remarkable restoration of Aβ42 altered proteins, including FOSL1, and TDO2. The protein-protein interaction network analysis of Bacopa monnieri restored proteins identified the hub gene involved in Alzheimer's disease. The findings from this study may open up new avenues for creating innovative therapeutic approaches for Alzheimer's disease.
期刊介绍:
Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.