{"title":"在自动诊断系统中聚合多模态集合模型的模型诊断可信度测量。","authors":"Chan-Yang Ju, Dong-Ho Lee","doi":"10.1016/j.ymeth.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic diagnostic systems (ADSs) have been garnering increased attention because they can alleviate the workload of clinicians by assisting in diagnosis and offering low-cost access to healthcare for people in medically underserved areas. ADS can suggest potential diseases by analyzing a patient's self-report. Previous research on ADS has leveraged diagnostic case data from various patients and medical knowledge to diagnose diseases, with multimodal ensemble methods proving particularly effective. However, the existing multimodal ensemble method combines the probabilities of different models in the aggregating process, which can not properly combine the probabilities that are produced by different criteria. To address these issues, we propose an effective aggregation framework for multimodal ensembles that can properly aggregate model-agnostic confidence scores and predictions from each model. Our framework transforms probability scores from different criteria into unified aggregation rule-based scores and reflects the gap between the probabilities that may be blurred in the aggregation process through the confidence score. In particular, The proposed confidence measurement method employs a post-analysis approach with the developed model or algorithm, making it adaptable in a model-agnostic manner and suitable for multimodal ensemble learning that utilizes heterogeneous prediction results. Our experimental results demonstrate that our framework outperforms existing approaches by more effectively leveraging the strengths of each ensemble member.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"231 ","pages":"Pages 103-114"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-agnostic confidence measurement for aggregating multimodal ensemble models in automatic diagnostic systems\",\"authors\":\"Chan-Yang Ju, Dong-Ho Lee\",\"doi\":\"10.1016/j.ymeth.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automatic diagnostic systems (ADSs) have been garnering increased attention because they can alleviate the workload of clinicians by assisting in diagnosis and offering low-cost access to healthcare for people in medically underserved areas. ADS can suggest potential diseases by analyzing a patient's self-report. Previous research on ADS has leveraged diagnostic case data from various patients and medical knowledge to diagnose diseases, with multimodal ensemble methods proving particularly effective. However, the existing multimodal ensemble method combines the probabilities of different models in the aggregating process, which can not properly combine the probabilities that are produced by different criteria. To address these issues, we propose an effective aggregation framework for multimodal ensembles that can properly aggregate model-agnostic confidence scores and predictions from each model. Our framework transforms probability scores from different criteria into unified aggregation rule-based scores and reflects the gap between the probabilities that may be blurred in the aggregation process through the confidence score. In particular, The proposed confidence measurement method employs a post-analysis approach with the developed model or algorithm, making it adaptable in a model-agnostic manner and suitable for multimodal ensemble learning that utilizes heterogeneous prediction results. Our experimental results demonstrate that our framework outperforms existing approaches by more effectively leveraging the strengths of each ensemble member.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"231 \",\"pages\":\"Pages 103-114\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104620232400210X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104620232400210X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Model-agnostic confidence measurement for aggregating multimodal ensemble models in automatic diagnostic systems
Automatic diagnostic systems (ADSs) have been garnering increased attention because they can alleviate the workload of clinicians by assisting in diagnosis and offering low-cost access to healthcare for people in medically underserved areas. ADS can suggest potential diseases by analyzing a patient's self-report. Previous research on ADS has leveraged diagnostic case data from various patients and medical knowledge to diagnose diseases, with multimodal ensemble methods proving particularly effective. However, the existing multimodal ensemble method combines the probabilities of different models in the aggregating process, which can not properly combine the probabilities that are produced by different criteria. To address these issues, we propose an effective aggregation framework for multimodal ensembles that can properly aggregate model-agnostic confidence scores and predictions from each model. Our framework transforms probability scores from different criteria into unified aggregation rule-based scores and reflects the gap between the probabilities that may be blurred in the aggregation process through the confidence score. In particular, The proposed confidence measurement method employs a post-analysis approach with the developed model or algorithm, making it adaptable in a model-agnostic manner and suitable for multimodal ensemble learning that utilizes heterogeneous prediction results. Our experimental results demonstrate that our framework outperforms existing approaches by more effectively leveraging the strengths of each ensemble member.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.