{"title":"癌症和纤维化中 microRNA-29b 的下调:分子见解和临床意义。","authors":"Pratik Pramod Shinde, Deepak Chitkara, Anupama Mittal","doi":"10.1016/j.drudis.2024.104190","DOIUrl":null,"url":null,"abstract":"<div><div>MicroRNA-29b (miR-29b) is known for its therapeutic potential as an antifibrotic and anticancer agent. In fibrotic conditions, miR-29b inhibits fibrogenesis by downregulating crucial regulators such as collagens, extracellular matrix proteins and the transforming growth factor-β pathway. Similarly, in cancer, it acts as a tumor suppressor by downregulating various oncogenes and signaling pathways involved in cancer progression, such as Wnt–β-catenin, p38–mitogen-activated protein kinase and nuclear factor-κB. However, the upregulation of these pathways suppresses miR-29b, contributing to fibrosis and cancer development. Preclinical research and clinical trials have shown that delivering exogenous miR-29b mimics can restore its expression, attenuating tumorigenesis and fibrogenesis. This review discusses miR-29b’s potential and its possible therapeutic development for cancer and fibrotic disorders.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"29 11","pages":"Article 104190"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulation of microRNA-29b in cancer and fibrosis: molecular insights and clinical implications\",\"authors\":\"Pratik Pramod Shinde, Deepak Chitkara, Anupama Mittal\",\"doi\":\"10.1016/j.drudis.2024.104190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>MicroRNA-29b (miR-29b) is known for its therapeutic potential as an antifibrotic and anticancer agent. In fibrotic conditions, miR-29b inhibits fibrogenesis by downregulating crucial regulators such as collagens, extracellular matrix proteins and the transforming growth factor-β pathway. Similarly, in cancer, it acts as a tumor suppressor by downregulating various oncogenes and signaling pathways involved in cancer progression, such as Wnt–β-catenin, p38–mitogen-activated protein kinase and nuclear factor-κB. However, the upregulation of these pathways suppresses miR-29b, contributing to fibrosis and cancer development. Preclinical research and clinical trials have shown that delivering exogenous miR-29b mimics can restore its expression, attenuating tumorigenesis and fibrogenesis. This review discusses miR-29b’s potential and its possible therapeutic development for cancer and fibrotic disorders.</div></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"29 11\",\"pages\":\"Article 104190\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644624003155\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644624003155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Downregulation of microRNA-29b in cancer and fibrosis: molecular insights and clinical implications
MicroRNA-29b (miR-29b) is known for its therapeutic potential as an antifibrotic and anticancer agent. In fibrotic conditions, miR-29b inhibits fibrogenesis by downregulating crucial regulators such as collagens, extracellular matrix proteins and the transforming growth factor-β pathway. Similarly, in cancer, it acts as a tumor suppressor by downregulating various oncogenes and signaling pathways involved in cancer progression, such as Wnt–β-catenin, p38–mitogen-activated protein kinase and nuclear factor-κB. However, the upregulation of these pathways suppresses miR-29b, contributing to fibrosis and cancer development. Preclinical research and clinical trials have shown that delivering exogenous miR-29b mimics can restore its expression, attenuating tumorigenesis and fibrogenesis. This review discusses miR-29b’s potential and its possible therapeutic development for cancer and fibrotic disorders.
期刊介绍:
Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed.
Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.