用于界面 4D-STEM 成像的先进压缩传感和动态采样。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Small Methods Pub Date : 2025-01-01 Epub Date: 2024-09-26 DOI:10.1002/smtd.202400742
Jacob Smith, Hoang Tran, Kevin M Roccapriore, Zhaiming Shen, Guannan Zhang, Miaofang Chi
{"title":"用于界面 4D-STEM 成像的先进压缩传感和动态采样。","authors":"Jacob Smith, Hoang Tran, Kevin M Roccapriore, Zhaiming Shen, Guannan Zhang, Miaofang Chi","doi":"10.1002/smtd.202400742","DOIUrl":null,"url":null,"abstract":"<p><p>Interfaces in energy materials and devices often involve beam-sensitive materials such as fast ionic, soft, or liquid phases. 4D scanning transmission electron microscopy (4D-STEM) offers insights into local lattice, strain charge, and field distributions, but faces challenges in analyzing beam-sensitive interfaces at high spatial resolutions. Here, a 4D-STEM compressive sensing algorithm is introduced that significantly reduces data acquisition time and electron dose. This method autonomously allocates probe positions on interfaces and reconstructs missing information from datasets acquired via dynamic sampling. This algorithm allows for the integration of various scanning schemes and electron probe conditions to optimize data integrity. Its data reconstruction employs a neural network and an autoencoder to correlate diffraction pattern features with measured properties, significantly reducing training costs. The accuracy of the reconstructed 4D-STEM datasets is verified using a combination of explicitly and implicitly trained parameters from atomic resolution datasets. This method is broadly applicable for 4D-STEM imaging of any local features of interest and will be available on GitHub upon publication.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2400742"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Compressive Sensing and Dynamic Sampling for 4D-STEM Imaging of Interfaces.\",\"authors\":\"Jacob Smith, Hoang Tran, Kevin M Roccapriore, Zhaiming Shen, Guannan Zhang, Miaofang Chi\",\"doi\":\"10.1002/smtd.202400742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interfaces in energy materials and devices often involve beam-sensitive materials such as fast ionic, soft, or liquid phases. 4D scanning transmission electron microscopy (4D-STEM) offers insights into local lattice, strain charge, and field distributions, but faces challenges in analyzing beam-sensitive interfaces at high spatial resolutions. Here, a 4D-STEM compressive sensing algorithm is introduced that significantly reduces data acquisition time and electron dose. This method autonomously allocates probe positions on interfaces and reconstructs missing information from datasets acquired via dynamic sampling. This algorithm allows for the integration of various scanning schemes and electron probe conditions to optimize data integrity. Its data reconstruction employs a neural network and an autoencoder to correlate diffraction pattern features with measured properties, significantly reducing training costs. The accuracy of the reconstructed 4D-STEM datasets is verified using a combination of explicitly and implicitly trained parameters from atomic resolution datasets. This method is broadly applicable for 4D-STEM imaging of any local features of interest and will be available on GitHub upon publication.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2400742\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202400742\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400742","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

能源材料和设备中的界面通常涉及对光束敏感的材料,如快速离子相、软相或液相。四维扫描透射电子显微镜(4D-STEM)可深入了解局部晶格、应变电荷和场分布,但在以高空间分辨率分析光束敏感界面时面临挑战。本文介绍了一种 4D-STEM 压缩传感算法,它能显著减少数据采集时间和电子剂量。该方法可自主分配界面上的探针位置,并从通过动态采样获取的数据集中重建缺失信息。该算法允许整合各种扫描方案和电子探针条件,以优化数据完整性。它的数据重建采用了神经网络和自动编码器,将衍射图样特征与测量属性相关联,大大降低了训练成本。利用来自原子分辨率数据集的显式和隐式训练参数组合,验证了重建的 4D-STEM 数据集的准确性。该方法广泛适用于任何感兴趣的局部特征的 4D-STEM 成像,一经发布,即可在 GitHub 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Compressive Sensing and Dynamic Sampling for 4D-STEM Imaging of Interfaces.

Interfaces in energy materials and devices often involve beam-sensitive materials such as fast ionic, soft, or liquid phases. 4D scanning transmission electron microscopy (4D-STEM) offers insights into local lattice, strain charge, and field distributions, but faces challenges in analyzing beam-sensitive interfaces at high spatial resolutions. Here, a 4D-STEM compressive sensing algorithm is introduced that significantly reduces data acquisition time and electron dose. This method autonomously allocates probe positions on interfaces and reconstructs missing information from datasets acquired via dynamic sampling. This algorithm allows for the integration of various scanning schemes and electron probe conditions to optimize data integrity. Its data reconstruction employs a neural network and an autoencoder to correlate diffraction pattern features with measured properties, significantly reducing training costs. The accuracy of the reconstructed 4D-STEM datasets is verified using a combination of explicitly and implicitly trained parameters from atomic resolution datasets. This method is broadly applicable for 4D-STEM imaging of any local features of interest and will be available on GitHub upon publication.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信