混合溶剂对电纺聚苯乙烯多孔纤维形态和疏水性的影响

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Guilherme Henrique França Melo, Uttandaraman Sundararaj
{"title":"混合溶剂对电纺聚苯乙烯多孔纤维形态和疏水性的影响","authors":"Guilherme Henrique França Melo,&nbsp;Uttandaraman Sundararaj","doi":"10.1002/marc.202400403","DOIUrl":null,"url":null,"abstract":"<p>Electrospun polystyrene (PS) fibers are produced using a mixed solvent of chloroform and n,n-dimethylformamide (DMF) to investigate the influence of the solvent ratio on the fiber surface morphology and contact angle of the obtained mats. Electrospinning is a simple processing technique for producing fibers with diameters in the range of nanometers to a few micrometers. When using the different solvent ratios for this process, porous PS membranes are created due to nonsolvent and thermally induced phase separation (N-TIPS). The morphology of the fibers is analyzed through scanning electron microscopy (SEM), which showed that fibers have diameters between 200 nm and 6 µm. SEM also revealed that the pores present on the surface of the fibers vary from densely compacted and well-formed nanopores with diameters in the range of 20–50 nm to larger pores with sizes of ≈100–200 nm. The pore size varied with different solvent ratios. The surface area is analyzed using the Brunauer–Emmett–Teller (BET) method and found that the polymeric fibers have a high surface area (≈35 m<sup>2</sup> g<sup>−1</sup>). The fibers with such morphology are highly hydrophobic, with a contact angle higher than 143°. These materials are excellent candidates for applications in textiles, filtration, and biomedical fields.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"45 21","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/marc.202400403","citationCount":"0","resultStr":"{\"title\":\"Influence of Mixed Solvent in the Morphology and Hydrophobicity of Electrospun Polystyrene Porous Fibers\",\"authors\":\"Guilherme Henrique França Melo,&nbsp;Uttandaraman Sundararaj\",\"doi\":\"10.1002/marc.202400403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrospun polystyrene (PS) fibers are produced using a mixed solvent of chloroform and n,n-dimethylformamide (DMF) to investigate the influence of the solvent ratio on the fiber surface morphology and contact angle of the obtained mats. Electrospinning is a simple processing technique for producing fibers with diameters in the range of nanometers to a few micrometers. When using the different solvent ratios for this process, porous PS membranes are created due to nonsolvent and thermally induced phase separation (N-TIPS). The morphology of the fibers is analyzed through scanning electron microscopy (SEM), which showed that fibers have diameters between 200 nm and 6 µm. SEM also revealed that the pores present on the surface of the fibers vary from densely compacted and well-formed nanopores with diameters in the range of 20–50 nm to larger pores with sizes of ≈100–200 nm. The pore size varied with different solvent ratios. The surface area is analyzed using the Brunauer–Emmett–Teller (BET) method and found that the polymeric fibers have a high surface area (≈35 m<sup>2</sup> g<sup>−1</sup>). The fibers with such morphology are highly hydrophobic, with a contact angle higher than 143°. These materials are excellent candidates for applications in textiles, filtration, and biomedical fields.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\"45 21\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/marc.202400403\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/marc.202400403\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202400403","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

使用氯仿和 n,n-二甲基甲酰胺(DMF)混合溶剂生产电纺丝聚苯乙烯(PS)纤维,以研究溶剂比例对纤维表面形态和所获纤维毡接触角的影响。电纺丝是一种简单的加工技术,可生产直径在纳米到几微米之间的纤维。在这一工艺中使用不同的溶剂比例时,由于非溶剂和热诱导相分离(N-TIPS),会产生多孔 PS 膜。通过扫描电子显微镜(SEM)分析了纤维的形态,结果表明纤维的直径在 200 纳米到 6 微米之间。扫描电子显微镜还显示,纤维表面的孔隙大小不一,有的孔隙密集,形成良好,直径在 20-50 纳米之间,有的孔隙较大,直径≈100-200 纳米。孔径随不同的溶剂比例而变化。使用布鲁诺-艾美特-泰勒(BET)法分析了表面积,发现聚合物纤维具有很高的表面积(≈35 m2 g-1)。具有这种形态的纤维具有很强的疏水性,接触角大于 143°。这些材料是应用于纺织、过滤和生物医学领域的绝佳候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Mixed Solvent in the Morphology and Hydrophobicity of Electrospun Polystyrene Porous Fibers

Influence of Mixed Solvent in the Morphology and Hydrophobicity of Electrospun Polystyrene Porous Fibers

Electrospun polystyrene (PS) fibers are produced using a mixed solvent of chloroform and n,n-dimethylformamide (DMF) to investigate the influence of the solvent ratio on the fiber surface morphology and contact angle of the obtained mats. Electrospinning is a simple processing technique for producing fibers with diameters in the range of nanometers to a few micrometers. When using the different solvent ratios for this process, porous PS membranes are created due to nonsolvent and thermally induced phase separation (N-TIPS). The morphology of the fibers is analyzed through scanning electron microscopy (SEM), which showed that fibers have diameters between 200 nm and 6 µm. SEM also revealed that the pores present on the surface of the fibers vary from densely compacted and well-formed nanopores with diameters in the range of 20–50 nm to larger pores with sizes of ≈100–200 nm. The pore size varied with different solvent ratios. The surface area is analyzed using the Brunauer–Emmett–Teller (BET) method and found that the polymeric fibers have a high surface area (≈35 m2 g−1). The fibers with such morphology are highly hydrophobic, with a contact angle higher than 143°. These materials are excellent candidates for applications in textiles, filtration, and biomedical fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信