Fouzia Taslim, Muhammad Umer Ashraf, Muhammad Farooq, Asif Mahmood, Rai Muhammad Sarfraz, Hira Ijaz, Nariman Shahid, Heba A. Gad
{"title":"利用青蒿种子粘液、粘蛋白和聚甲基丙烯酸酯的共聚物开发 pH 值响应型水凝胶,用于控制阿昔洛韦钠的给药。","authors":"Fouzia Taslim, Muhammad Umer Ashraf, Muhammad Farooq, Asif Mahmood, Rai Muhammad Sarfraz, Hira Ijaz, Nariman Shahid, Heba A. Gad","doi":"10.1002/marc.202400421","DOIUrl":null,"url":null,"abstract":"<p>To cope with the constraints of conventional drug delivery systems, site-specific drug delivery systems are the major focus of researchers. The present research developed water-swellable, pH-responsive methacrylic acid-based hydrogel scaffolds of <i>Artemisia vulgaris</i> seed mucilage with mucin and loaded with acyclovir sodium as a model drug. The developed hydrogel discs are evaluated for diverse parameters. Drug loading efficiency in all formulations ranges from 63% to 75%. The hydrogels exhibited pH-dependent swelling, displaying optimum swelling in a phosphate buffer (pH 7.4), and insignificant swelling in an acidic buffer (pH 1.2), in addition, they responded well to electrolyte concentrations. The sol-gel fraction is estimated ranging from 60 to 95%. Dissolution studies unveiled sustained drug release for 24 h in a phosphate buffer of pH 7.4, exhibiting zero-order release kinetics. Moreover, FTIR spectra confirmed the drug-excipient compatibility. SEM photomicrographs revealed a rough and porous surface of hydrogel discs with several pores and channels. The PXRD diffractograms exposed the amorphous nature of the polymeric blends. The findings of acute toxicity studies proved the developed hydrogel network is biocompatible. Therefore, these outcomes connote the newly created network as a smart delivery system, able to dispatch acyclovir sodium into the intestinal segment for a prolonged period.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"45 22","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of pH-responsive Hydrogel from Copolymers of Artemisia vulgaris Seed Mucilage, Mucin, and poly(methacrylate) for Controlled Delivery of Acyclovir Sodium\",\"authors\":\"Fouzia Taslim, Muhammad Umer Ashraf, Muhammad Farooq, Asif Mahmood, Rai Muhammad Sarfraz, Hira Ijaz, Nariman Shahid, Heba A. Gad\",\"doi\":\"10.1002/marc.202400421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To cope with the constraints of conventional drug delivery systems, site-specific drug delivery systems are the major focus of researchers. The present research developed water-swellable, pH-responsive methacrylic acid-based hydrogel scaffolds of <i>Artemisia vulgaris</i> seed mucilage with mucin and loaded with acyclovir sodium as a model drug. The developed hydrogel discs are evaluated for diverse parameters. Drug loading efficiency in all formulations ranges from 63% to 75%. The hydrogels exhibited pH-dependent swelling, displaying optimum swelling in a phosphate buffer (pH 7.4), and insignificant swelling in an acidic buffer (pH 1.2), in addition, they responded well to electrolyte concentrations. The sol-gel fraction is estimated ranging from 60 to 95%. Dissolution studies unveiled sustained drug release for 24 h in a phosphate buffer of pH 7.4, exhibiting zero-order release kinetics. Moreover, FTIR spectra confirmed the drug-excipient compatibility. SEM photomicrographs revealed a rough and porous surface of hydrogel discs with several pores and channels. The PXRD diffractograms exposed the amorphous nature of the polymeric blends. The findings of acute toxicity studies proved the developed hydrogel network is biocompatible. Therefore, these outcomes connote the newly created network as a smart delivery system, able to dispatch acyclovir sodium into the intestinal segment for a prolonged period.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\"45 22\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/marc.202400421\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202400421","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Development of pH-responsive Hydrogel from Copolymers of Artemisia vulgaris Seed Mucilage, Mucin, and poly(methacrylate) for Controlled Delivery of Acyclovir Sodium
To cope with the constraints of conventional drug delivery systems, site-specific drug delivery systems are the major focus of researchers. The present research developed water-swellable, pH-responsive methacrylic acid-based hydrogel scaffolds of Artemisia vulgaris seed mucilage with mucin and loaded with acyclovir sodium as a model drug. The developed hydrogel discs are evaluated for diverse parameters. Drug loading efficiency in all formulations ranges from 63% to 75%. The hydrogels exhibited pH-dependent swelling, displaying optimum swelling in a phosphate buffer (pH 7.4), and insignificant swelling in an acidic buffer (pH 1.2), in addition, they responded well to electrolyte concentrations. The sol-gel fraction is estimated ranging from 60 to 95%. Dissolution studies unveiled sustained drug release for 24 h in a phosphate buffer of pH 7.4, exhibiting zero-order release kinetics. Moreover, FTIR spectra confirmed the drug-excipient compatibility. SEM photomicrographs revealed a rough and porous surface of hydrogel discs with several pores and channels. The PXRD diffractograms exposed the amorphous nature of the polymeric blends. The findings of acute toxicity studies proved the developed hydrogel network is biocompatible. Therefore, these outcomes connote the newly created network as a smart delivery system, able to dispatch acyclovir sodium into the intestinal segment for a prolonged period.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.