用于水下储能和水下传感的 PVA 基水凝胶材料。

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Peidi Zhou, Bingjie Xu, Haihang Feng, Zhiling Luo, Mingcen Weng
{"title":"用于水下储能和水下传感的 PVA 基水凝胶材料。","authors":"Peidi Zhou, Bingjie Xu, Haihang Feng, Zhiling Luo, Mingcen Weng","doi":"10.1002/asia.202401109","DOIUrl":null,"url":null,"abstract":"<p><p>As human exploration of marine continues to expand, the demand for underwater devices is also increasing. The unique properties of hydrogel materials make them well-suited for underwater applications. We propose a multi-functional polyvinyl alcohol (PVA) - NaCl @ Polyaniline (PANI) (PNP) hydrogel, which is characterized by easy fabrication, integrated structure, and flexibility, and can be directly applied in the fields of underwater energy storage and underwater sensing. Solid-state supercapacitors fabricated by the PNP hydrogel, due to integrated and all-solid-state design, can be charged and discharged underwater without encapsulation. What's more, the PNP supercapacitor can maintain a capacitance retention rate of over 90 % after 5,000 cycles in simulated seawater, eliminating concerns about the hydrogel's dehydration when used underwater. The PNP hydrogel with an integrated three-layer structure can also be applied to the capacitive pressure sensors, which can also be directly used in underwater environments without the need for encapsulation, significantly reducing the structural complexity and preparation steps of the device. Finally, we demonstrate a \"supercapacitor module\" with a voltage window greater than 1.6 V created by directly connecting multiple PNP supercapacitors in series, as well as an underwater intelligent glove, providing new solutions for underwater energy storage and underwater wearable sensing applications.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PVA-based Hydrogel Materials for Underwater Energy Storage and Underwater Sensing.\",\"authors\":\"Peidi Zhou, Bingjie Xu, Haihang Feng, Zhiling Luo, Mingcen Weng\",\"doi\":\"10.1002/asia.202401109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As human exploration of marine continues to expand, the demand for underwater devices is also increasing. The unique properties of hydrogel materials make them well-suited for underwater applications. We propose a multi-functional polyvinyl alcohol (PVA) - NaCl @ Polyaniline (PANI) (PNP) hydrogel, which is characterized by easy fabrication, integrated structure, and flexibility, and can be directly applied in the fields of underwater energy storage and underwater sensing. Solid-state supercapacitors fabricated by the PNP hydrogel, due to integrated and all-solid-state design, can be charged and discharged underwater without encapsulation. What's more, the PNP supercapacitor can maintain a capacitance retention rate of over 90 % after 5,000 cycles in simulated seawater, eliminating concerns about the hydrogel's dehydration when used underwater. The PNP hydrogel with an integrated three-layer structure can also be applied to the capacitive pressure sensors, which can also be directly used in underwater environments without the need for encapsulation, significantly reducing the structural complexity and preparation steps of the device. Finally, we demonstrate a \\\"supercapacitor module\\\" with a voltage window greater than 1.6 V created by directly connecting multiple PNP supercapacitors in series, as well as an underwater intelligent glove, providing new solutions for underwater energy storage and underwater wearable sensing applications.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1002/asia.202401109\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401109","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着人类对海洋的探索不断扩大,对水下设备的需求也在不断增加。水凝胶材料的独特性能使其非常适合水下应用。我们提出了一种多功能聚乙烯醇(PVA)-NaCl@聚苯胺(PANI)(PNP)水凝胶,它具有易于制造、结构一体化、柔性好等特点,可直接应用于水下储能和水下传感领域。由 PNP 水凝胶制成的固态超级电容器采用一体化全固态设计,可在水下充放电,无需封装。此外,PNP 超级电容器在模拟海水中循环 5,000 次后,电容保持率仍能保持在 90% 以上,消除了水凝胶在水下使用时脱水的担忧。集成三层结构的 PNP 水凝胶还可应用于电容式压力传感器,无需封装即可直接在水下环境中使用,大大降低了设备的结构复杂性和制备步骤。最后,我们展示了通过直接串联多个 PNP 超级电容器而产生的电压窗口大于 1.6 V 的 "超级电容器模块",以及水下智能手套,为水下储能和水下可穿戴传感应用提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PVA-based Hydrogel Materials for Underwater Energy Storage and Underwater Sensing.

As human exploration of marine continues to expand, the demand for underwater devices is also increasing. The unique properties of hydrogel materials make them well-suited for underwater applications. We propose a multi-functional polyvinyl alcohol (PVA) - NaCl @ Polyaniline (PANI) (PNP) hydrogel, which is characterized by easy fabrication, integrated structure, and flexibility, and can be directly applied in the fields of underwater energy storage and underwater sensing. Solid-state supercapacitors fabricated by the PNP hydrogel, due to integrated and all-solid-state design, can be charged and discharged underwater without encapsulation. What's more, the PNP supercapacitor can maintain a capacitance retention rate of over 90 % after 5,000 cycles in simulated seawater, eliminating concerns about the hydrogel's dehydration when used underwater. The PNP hydrogel with an integrated three-layer structure can also be applied to the capacitive pressure sensors, which can also be directly used in underwater environments without the need for encapsulation, significantly reducing the structural complexity and preparation steps of the device. Finally, we demonstrate a "supercapacitor module" with a voltage window greater than 1.6 V created by directly connecting multiple PNP supercapacitors in series, as well as an underwater intelligent glove, providing new solutions for underwater energy storage and underwater wearable sensing applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信