Ebru Didem Kuran, Burcu Uner, Muhammet Emin Cam, Nuray Ulusoy-Guzeldemirci
{"title":"含有 1,2,4-三唑的新型酰肼-腙作为抗凋亡蛋白 Bcl-xL 的强效抑制剂:合成、生物学评价和对接研究。","authors":"Ebru Didem Kuran, Burcu Uner, Muhammet Emin Cam, Nuray Ulusoy-Guzeldemirci","doi":"10.1002/ardp.202400562","DOIUrl":null,"url":null,"abstract":"<p>This study describes the synthesis and characterization of a series of novel hydrazide-hydrazone derivatives containing a 1,2,4-triazole ring. The compounds were characterized using various spectroscopic techniques, such as FT-IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HRMS, and elemental analysis. The antiproliferative activity of the synthesized compounds was evaluated against a panel of human cancer cell lines (HCT-116, HepG-2, KLN205, LTPA, U138, and SW620) and healthy cell lines (HSkMC and iPSCs). Among the compounds tested, compounds <b>4</b>, <b>5p</b>, <b>5r</b>, and <b>5s</b> showed the highest effectiveness in inhibiting the growth of cancer cells with Bcl-xL inhibitory concentration (IC<sub>50</sub>) values. These compounds further demonstrated selective cytotoxicity against the Bcl-xL-dependent lymphoma cell line (DBs). Molecular docking studies were also performed to investigate the potential binding interactions of compounds <b>4</b>, <b>5p</b>, <b>5r</b>, and <b>5s</b> with the active site of Bcl-xL (PDB ID: 7LH7, 1.4 Å). Mechanistic studies revealed that compounds <b>4</b>, <b>5r</b>, and <b>5s</b> induced apoptosis predominantly through the intrinsic mitochondrial pathway, while compound <b>5p</b> exhibited a distinct cell cycle arrest profile, impacting both the S and G2/M phases. Western blot analysis suggested that these compounds may downregulate cyclin expression, thereby blocking its association with Bcl-xL. Overall, these results demonstrate the potential of these novel hydrazide-hydrazone derivatives as anticancer agents with activity comparable or superior to doxorubicin and 5-fluorouracil.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel hydrazide-hydrazone containing 1,2,4-triazole as potent inhibitors of antiapoptotic protein Bcl-xL: Synthesis, biological evaluation, and docking studies\",\"authors\":\"Ebru Didem Kuran, Burcu Uner, Muhammet Emin Cam, Nuray Ulusoy-Guzeldemirci\",\"doi\":\"10.1002/ardp.202400562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study describes the synthesis and characterization of a series of novel hydrazide-hydrazone derivatives containing a 1,2,4-triazole ring. The compounds were characterized using various spectroscopic techniques, such as FT-IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HRMS, and elemental analysis. The antiproliferative activity of the synthesized compounds was evaluated against a panel of human cancer cell lines (HCT-116, HepG-2, KLN205, LTPA, U138, and SW620) and healthy cell lines (HSkMC and iPSCs). Among the compounds tested, compounds <b>4</b>, <b>5p</b>, <b>5r</b>, and <b>5s</b> showed the highest effectiveness in inhibiting the growth of cancer cells with Bcl-xL inhibitory concentration (IC<sub>50</sub>) values. These compounds further demonstrated selective cytotoxicity against the Bcl-xL-dependent lymphoma cell line (DBs). Molecular docking studies were also performed to investigate the potential binding interactions of compounds <b>4</b>, <b>5p</b>, <b>5r</b>, and <b>5s</b> with the active site of Bcl-xL (PDB ID: 7LH7, 1.4 Å). Mechanistic studies revealed that compounds <b>4</b>, <b>5r</b>, and <b>5s</b> induced apoptosis predominantly through the intrinsic mitochondrial pathway, while compound <b>5p</b> exhibited a distinct cell cycle arrest profile, impacting both the S and G2/M phases. Western blot analysis suggested that these compounds may downregulate cyclin expression, thereby blocking its association with Bcl-xL. Overall, these results demonstrate the potential of these novel hydrazide-hydrazone derivatives as anticancer agents with activity comparable or superior to doxorubicin and 5-fluorouracil.</p>\",\"PeriodicalId\":128,\"journal\":{\"name\":\"Archiv der Pharmazie\",\"volume\":\"357 12\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400562\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400562","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Novel hydrazide-hydrazone containing 1,2,4-triazole as potent inhibitors of antiapoptotic protein Bcl-xL: Synthesis, biological evaluation, and docking studies
This study describes the synthesis and characterization of a series of novel hydrazide-hydrazone derivatives containing a 1,2,4-triazole ring. The compounds were characterized using various spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, HRMS, and elemental analysis. The antiproliferative activity of the synthesized compounds was evaluated against a panel of human cancer cell lines (HCT-116, HepG-2, KLN205, LTPA, U138, and SW620) and healthy cell lines (HSkMC and iPSCs). Among the compounds tested, compounds 4, 5p, 5r, and 5s showed the highest effectiveness in inhibiting the growth of cancer cells with Bcl-xL inhibitory concentration (IC50) values. These compounds further demonstrated selective cytotoxicity against the Bcl-xL-dependent lymphoma cell line (DBs). Molecular docking studies were also performed to investigate the potential binding interactions of compounds 4, 5p, 5r, and 5s with the active site of Bcl-xL (PDB ID: 7LH7, 1.4 Å). Mechanistic studies revealed that compounds 4, 5r, and 5s induced apoptosis predominantly through the intrinsic mitochondrial pathway, while compound 5p exhibited a distinct cell cycle arrest profile, impacting both the S and G2/M phases. Western blot analysis suggested that these compounds may downregulate cyclin expression, thereby blocking its association with Bcl-xL. Overall, these results demonstrate the potential of these novel hydrazide-hydrazone derivatives as anticancer agents with activity comparable or superior to doxorubicin and 5-fluorouracil.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.