{"title":"原生碳水化合物的光驱动位点选择性糖基化。","authors":"João A. Pacheco, Prof. Nuno R. Candeias","doi":"10.1002/anie.202414424","DOIUrl":null,"url":null,"abstract":"<p>Carbohydrates constitute the largest source of biomass on Earth, but their synthetic modification is challenging due to their high content in oxygen functionalities. The site- and stereoselective modification of native sugars is a definite goal of glycochemistry research. Recent efforts to bypass the need for protecting groups, leveraging selective activation through photochemical mechanisms for site-selective C−C bond formation from native sugars, are likely to largely impact all glycochemistry-related areas. Davis, Koh, and co-workers have recently presented their use of photocatalysis to develop a “cap and glycosylate” approach for the site- and stereoselective <i>C</i>-glycosylation of native sugars. A modernized direct radical functionalization of in situ formed thioglycoside using photocatalysis was used in the synthetic manipulation of unprotected carbohydrates. This allowed reaching complex saccharides, and post-translational modification of proteins.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 50","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Driven Site-Selective Glycosylation of Native Carbohydrates\",\"authors\":\"João A. Pacheco, Prof. Nuno R. Candeias\",\"doi\":\"10.1002/anie.202414424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbohydrates constitute the largest source of biomass on Earth, but their synthetic modification is challenging due to their high content in oxygen functionalities. The site- and stereoselective modification of native sugars is a definite goal of glycochemistry research. Recent efforts to bypass the need for protecting groups, leveraging selective activation through photochemical mechanisms for site-selective C−C bond formation from native sugars, are likely to largely impact all glycochemistry-related areas. Davis, Koh, and co-workers have recently presented their use of photocatalysis to develop a “cap and glycosylate” approach for the site- and stereoselective <i>C</i>-glycosylation of native sugars. A modernized direct radical functionalization of in situ formed thioglycoside using photocatalysis was used in the synthetic manipulation of unprotected carbohydrates. This allowed reaching complex saccharides, and post-translational modification of proteins.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"63 50\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414424\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202414424","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Light-Driven Site-Selective Glycosylation of Native Carbohydrates
Carbohydrates constitute the largest source of biomass on Earth, but their synthetic modification is challenging due to their high content in oxygen functionalities. The site- and stereoselective modification of native sugars is a definite goal of glycochemistry research. Recent efforts to bypass the need for protecting groups, leveraging selective activation through photochemical mechanisms for site-selective C−C bond formation from native sugars, are likely to largely impact all glycochemistry-related areas. Davis, Koh, and co-workers have recently presented their use of photocatalysis to develop a “cap and glycosylate” approach for the site- and stereoselective C-glycosylation of native sugars. A modernized direct radical functionalization of in situ formed thioglycoside using photocatalysis was used in the synthetic manipulation of unprotected carbohydrates. This allowed reaching complex saccharides, and post-translational modification of proteins.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.