Todd W. Dowrey, Samuel F. Cranston, Nicholas Skvir, Yvonne Lok, Brian Gould, Bradley Petrowitz, Daniel Villar, Jidong Shan, Marianne James, Mark Dodge, Anna C. Belkina, Richard M. Giadone, Sofiya Milman, Paola Sebastiani, Thomas T. Perls, Stacy L. Andersen, George J. Murphy
{"title":"百岁老人及其后代的诱导多能干细胞长寿库。","authors":"Todd W. Dowrey, Samuel F. Cranston, Nicholas Skvir, Yvonne Lok, Brian Gould, Bradley Petrowitz, Daniel Villar, Jidong Shan, Marianne James, Mark Dodge, Anna C. Belkina, Richard M. Giadone, Sofiya Milman, Paola Sebastiani, Thomas T. Perls, Stacy L. Andersen, George J. Murphy","doi":"10.1111/acel.14351","DOIUrl":null,"url":null,"abstract":"<p>Centenarians provide a unique lens through which to study longevity, healthy aging, and resiliency. Moreover, models of <i>human</i> aging and resilience to disease that allow for the testing of potential interventions are virtually non-existent. We obtained and characterized over 96 centenarian and offspring peripheral blood samples including those connected to functional independence data highlighting resistance to disability and cognitive impairment. Targeted methylation arrays were used in molecular aging clocks to compare and contrast differences between biological and chronological age in these specialized subjects. Isolated peripheral blood mononuclear cells (PBMCs) from 20 of these subjects were then successfully reprogrammed into high-quality induced pluripotent stem cell (iPSC) lines which were functionally characterized for pluripotency, genomic stability, and the ability to undergo directed differentiation. The result of this work is a one-of-a-kind resource for studies of human longevity and resilience that can fuel the discovery and validation of novel therapeutics for aging-related disease.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 1","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709102/pdf/","citationCount":"0","resultStr":"{\"title\":\"A longevity-specific bank of induced pluripotent stem cells from centenarians and their offspring\",\"authors\":\"Todd W. Dowrey, Samuel F. Cranston, Nicholas Skvir, Yvonne Lok, Brian Gould, Bradley Petrowitz, Daniel Villar, Jidong Shan, Marianne James, Mark Dodge, Anna C. Belkina, Richard M. Giadone, Sofiya Milman, Paola Sebastiani, Thomas T. Perls, Stacy L. Andersen, George J. Murphy\",\"doi\":\"10.1111/acel.14351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Centenarians provide a unique lens through which to study longevity, healthy aging, and resiliency. Moreover, models of <i>human</i> aging and resilience to disease that allow for the testing of potential interventions are virtually non-existent. We obtained and characterized over 96 centenarian and offspring peripheral blood samples including those connected to functional independence data highlighting resistance to disability and cognitive impairment. Targeted methylation arrays were used in molecular aging clocks to compare and contrast differences between biological and chronological age in these specialized subjects. Isolated peripheral blood mononuclear cells (PBMCs) from 20 of these subjects were then successfully reprogrammed into high-quality induced pluripotent stem cell (iPSC) lines which were functionally characterized for pluripotency, genomic stability, and the ability to undergo directed differentiation. The result of this work is a one-of-a-kind resource for studies of human longevity and resilience that can fuel the discovery and validation of novel therapeutics for aging-related disease.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11709102/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14351\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14351","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
A longevity-specific bank of induced pluripotent stem cells from centenarians and their offspring
Centenarians provide a unique lens through which to study longevity, healthy aging, and resiliency. Moreover, models of human aging and resilience to disease that allow for the testing of potential interventions are virtually non-existent. We obtained and characterized over 96 centenarian and offspring peripheral blood samples including those connected to functional independence data highlighting resistance to disability and cognitive impairment. Targeted methylation arrays were used in molecular aging clocks to compare and contrast differences between biological and chronological age in these specialized subjects. Isolated peripheral blood mononuclear cells (PBMCs) from 20 of these subjects were then successfully reprogrammed into high-quality induced pluripotent stem cell (iPSC) lines which were functionally characterized for pluripotency, genomic stability, and the ability to undergo directed differentiation. The result of this work is a one-of-a-kind resource for studies of human longevity and resilience that can fuel the discovery and validation of novel therapeutics for aging-related disease.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.