Pa Reum Lee, Taewoong Ha, Hoon-Seong Choi, Seung Eun Lee, Chungho Kim, Gyu-Sang Hong
{"title":"Piezo1 在小鼠 TRPV1 阳性痛觉感受器中介导机械信号。","authors":"Pa Reum Lee, Taewoong Ha, Hoon-Seong Choi, Seung Eun Lee, Chungho Kim, Gyu-Sang Hong","doi":"10.1111/apha.14236","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>This investigation addresses Piezo1's expression and mechanistic role in dorsal root ganglion (DRG) neurons and delineates its participation in mechanical and inflammatory pain modulation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analyzed Piezo1's expression patterns in DRG neurons and utilized Piezo1-specific shRNA to modulate its activity. Electrophysiological assessments of mechanically activated (MA) currents in DRG neurons and behavioral analyses in mouse models of inflammatory pain were conducted to elucidate Piezo1's functional implications. Additionally, we investigated the excitability of TRPV1-expressing DRG neurons, particularly under inflammatory conditions.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Piezo1 was preferentially expressed in DRG neurons co-expressing the TRPV1 nociceptor marker. Knockdown of Piezo1 attenuated intermediately adapting MA currents and lessened tactile pain hypersensitivity in models of inflammatory pain. Additionally, silencing Piezo1 modified the excitability of TRPV1-expressing neurons under inflammatory stress.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Piezo1 emerges as a key mediator in the transmission of mechanical and inflammatory pain, indicating its potential as a novel target for pain management therapies. Our finding not only advances the understanding of nociceptive signaling but also emphasizes the therapeutic potential of modulating Piezo1 in the treatment of pain.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"240 11","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14236","citationCount":"0","resultStr":"{\"title\":\"Piezo1 mediates mechanical signals in TRPV1-positive nociceptors in mice\",\"authors\":\"Pa Reum Lee, Taewoong Ha, Hoon-Seong Choi, Seung Eun Lee, Chungho Kim, Gyu-Sang Hong\",\"doi\":\"10.1111/apha.14236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>This investigation addresses Piezo1's expression and mechanistic role in dorsal root ganglion (DRG) neurons and delineates its participation in mechanical and inflammatory pain modulation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We analyzed Piezo1's expression patterns in DRG neurons and utilized Piezo1-specific shRNA to modulate its activity. Electrophysiological assessments of mechanically activated (MA) currents in DRG neurons and behavioral analyses in mouse models of inflammatory pain were conducted to elucidate Piezo1's functional implications. Additionally, we investigated the excitability of TRPV1-expressing DRG neurons, particularly under inflammatory conditions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Piezo1 was preferentially expressed in DRG neurons co-expressing the TRPV1 nociceptor marker. Knockdown of Piezo1 attenuated intermediately adapting MA currents and lessened tactile pain hypersensitivity in models of inflammatory pain. Additionally, silencing Piezo1 modified the excitability of TRPV1-expressing neurons under inflammatory stress.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Piezo1 emerges as a key mediator in the transmission of mechanical and inflammatory pain, indicating its potential as a novel target for pain management therapies. Our finding not only advances the understanding of nociceptive signaling but also emphasizes the therapeutic potential of modulating Piezo1 in the treatment of pain.</p>\\n </section>\\n </div>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"240 11\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.14236\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.14236","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Piezo1 mediates mechanical signals in TRPV1-positive nociceptors in mice
Aim
This investigation addresses Piezo1's expression and mechanistic role in dorsal root ganglion (DRG) neurons and delineates its participation in mechanical and inflammatory pain modulation.
Methods
We analyzed Piezo1's expression patterns in DRG neurons and utilized Piezo1-specific shRNA to modulate its activity. Electrophysiological assessments of mechanically activated (MA) currents in DRG neurons and behavioral analyses in mouse models of inflammatory pain were conducted to elucidate Piezo1's functional implications. Additionally, we investigated the excitability of TRPV1-expressing DRG neurons, particularly under inflammatory conditions.
Results
Piezo1 was preferentially expressed in DRG neurons co-expressing the TRPV1 nociceptor marker. Knockdown of Piezo1 attenuated intermediately adapting MA currents and lessened tactile pain hypersensitivity in models of inflammatory pain. Additionally, silencing Piezo1 modified the excitability of TRPV1-expressing neurons under inflammatory stress.
Conclusion
Piezo1 emerges as a key mediator in the transmission of mechanical and inflammatory pain, indicating its potential as a novel target for pain management therapies. Our finding not only advances the understanding of nociceptive signaling but also emphasizes the therapeutic potential of modulating Piezo1 in the treatment of pain.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.