利用 PPLFER 和 QSPRs 改进对 PFAS 分配的预测。

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Trevor N. Brown, James M. Armitage, Alessandro Sangion and Jon A. Arnot
{"title":"利用 PPLFER 和 QSPRs 改进对 PFAS 分配的预测。","authors":"Trevor N. Brown, James M. Armitage, Alessandro Sangion and Jon A. Arnot","doi":"10.1039/D4EM00485J","DOIUrl":null,"url":null,"abstract":"<p >Per- and polyfluoroalkyl substances (PFAS) are chemicals of high concern and are undergoing hazard and risk assessment worldwide. Reliable physicochemical property (PCP) data are fundamental to assessments. However, experimental PCP data for PFAS are limited and property prediction tools such as quantitative structure–property relationships (QSPRs) therefore have poor predictive power for PFAS. New experimental data from Endo 2023 are used to improve QSPRs for predicting poly-parameter linear free energy relationship (PPLFER) descriptors for calculating water solubility (<em>S</em><small><sub>W</sub></small>), vapor pressure (VP) and the octanol–water (<em>K</em><small><sub>OW</sub></small>), octanol–air (<em>K</em><small><sub>OA</sub></small>) and air–water (<em>K</em><small><sub>AW</sub></small>) partition ratios. The new experimental data are only for neutral PFAS, and the QSPRs are only applicable to neutral chemicals. A key PPLFER descriptor for PFAS is the molar volume and this work compares different versions and makes recommendations for obtaining the best PCP predictions. The new models are included in the freely available IFSQSAR package (version 1.1.1), and property predictions are compared to those from the previous IFSQSAR (version 1.1.0) and from QSPRs in the US EPA's EPI Suite (version 4.11) and OPERA (version 2.9) models. The results from the new IFSQSAR models show improvements for predicting PFAS PCPs. The root mean squared error (RMSE) for predicting log <em>K</em><small><sub>OW</sub></small><em>versus</em> expected values from quantum chemical calculations was reduced by approximately 1 log unit whereas the RMSE for predicting log <em>K</em><small><sub>AW</sub></small> and log <em>K</em><small><sub>OA</sub></small> was reduced by 0.2 log units. IFSQSAR v.1.1.1 has an RMSE one or more log units lower than predictions from OPERA and EPI Suite when compared to expected values of log <em>K</em><small><sub>OW</sub></small>, log <em>K</em><small><sub>AW</sub></small> and log <em>K</em><small><sub>OA</sub></small> for PFAS, except for EPI Suite predictions for log <em>K</em><small><sub>OW</sub></small> which have a comparable RMSE. Recommendations for future experimental work for PPLFER descriptors for PFAS and future research to improve PCP predictions for PFAS are presented.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" 11","pages":" 1986-1998"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00485j?page=search","citationCount":"0","resultStr":"{\"title\":\"Improved prediction of PFAS partitioning with PPLFERs and QSPRs†\",\"authors\":\"Trevor N. Brown, James M. Armitage, Alessandro Sangion and Jon A. Arnot\",\"doi\":\"10.1039/D4EM00485J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Per- and polyfluoroalkyl substances (PFAS) are chemicals of high concern and are undergoing hazard and risk assessment worldwide. Reliable physicochemical property (PCP) data are fundamental to assessments. However, experimental PCP data for PFAS are limited and property prediction tools such as quantitative structure–property relationships (QSPRs) therefore have poor predictive power for PFAS. New experimental data from Endo 2023 are used to improve QSPRs for predicting poly-parameter linear free energy relationship (PPLFER) descriptors for calculating water solubility (<em>S</em><small><sub>W</sub></small>), vapor pressure (VP) and the octanol–water (<em>K</em><small><sub>OW</sub></small>), octanol–air (<em>K</em><small><sub>OA</sub></small>) and air–water (<em>K</em><small><sub>AW</sub></small>) partition ratios. The new experimental data are only for neutral PFAS, and the QSPRs are only applicable to neutral chemicals. A key PPLFER descriptor for PFAS is the molar volume and this work compares different versions and makes recommendations for obtaining the best PCP predictions. The new models are included in the freely available IFSQSAR package (version 1.1.1), and property predictions are compared to those from the previous IFSQSAR (version 1.1.0) and from QSPRs in the US EPA's EPI Suite (version 4.11) and OPERA (version 2.9) models. The results from the new IFSQSAR models show improvements for predicting PFAS PCPs. The root mean squared error (RMSE) for predicting log <em>K</em><small><sub>OW</sub></small><em>versus</em> expected values from quantum chemical calculations was reduced by approximately 1 log unit whereas the RMSE for predicting log <em>K</em><small><sub>AW</sub></small> and log <em>K</em><small><sub>OA</sub></small> was reduced by 0.2 log units. IFSQSAR v.1.1.1 has an RMSE one or more log units lower than predictions from OPERA and EPI Suite when compared to expected values of log <em>K</em><small><sub>OW</sub></small>, log <em>K</em><small><sub>AW</sub></small> and log <em>K</em><small><sub>OA</sub></small> for PFAS, except for EPI Suite predictions for log <em>K</em><small><sub>OW</sub></small> which have a comparable RMSE. Recommendations for future experimental work for PPLFER descriptors for PFAS and future research to improve PCP predictions for PFAS are presented.</p>\",\"PeriodicalId\":74,\"journal\":{\"name\":\"Environmental Science: Processes & Impacts\",\"volume\":\" 11\",\"pages\":\" 1986-1998\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/em/d4em00485j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Processes & Impacts\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00485j\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/em/d4em00485j","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

全氟烷基和多氟烷基物质 (PFAS) 是备受关注的化学品,目前正在全球范围内进行危害和风险评估。可靠的物理化学特性(PCP)数据是评估的基础。然而,PFAS 的实验 PCP 数据有限,因此定量结构-性能关系 (QSPR) 等性能预测工具对 PFAS 的预测能力较差。来自 Endo 2023 的新实验数据用于改进 QSPRs,以预测多参数线性自由能关系 (PPLFER) 描述因子,从而计算水溶性 (SW)、蒸汽压 (VP) 以及辛醇-水 (KOW)、辛醇-空气 (KOA) 和空气-水 (KAW) 分配比例。新的实验数据仅适用于中性 PFAS,而 QSPRs 仅适用于中性化学品。PPLFER 对 PFAS 的一个关键描述符是摩尔体积,这项工作对不同版本进行了比较,并提出了获得最佳 PCP 预测的建议。新模型包含在免费提供的 IFSQSAR 软件包(1.1.1 版)中,其性质预测结果与之前的 IFSQSAR(1.1.0 版)以及美国环保署 EPI Suite(4.11 版)和 OPERA(2.9 版)模型中的 QSPR 进行了比较。新 IFSQSAR 模型的结果表明,预测 PFAS 五氯苯酚的能力有所提高。预测对数 KOW 与量子化学计算预期值的均方根误差 (RMSE) 降低了约 1 个对数单位,而预测对数 KAW 和对数 KOA 的均方根误差则降低了 0.2 个对数单位。与全氟辛烷磺酸的对数 KOW、对数 KAW 和对数 KOA 的预期值相比,IFSQSAR v.1.1 的均方根误差比 OPERA 和 EPI Suite 的预测值低一个或多个对数单位,但 EPI Suite 对对数 KOW 的预测值除外,其均方根误差与 OPERA 和 EPI Suite 的预测值相当。本文提出了针对 PPLFER 描述因子的未来实验工作建议,以及改进 PCP 预测 PFAS 的未来研究建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved prediction of PFAS partitioning with PPLFERs and QSPRs†

Improved prediction of PFAS partitioning with PPLFERs and QSPRs†

Per- and polyfluoroalkyl substances (PFAS) are chemicals of high concern and are undergoing hazard and risk assessment worldwide. Reliable physicochemical property (PCP) data are fundamental to assessments. However, experimental PCP data for PFAS are limited and property prediction tools such as quantitative structure–property relationships (QSPRs) therefore have poor predictive power for PFAS. New experimental data from Endo 2023 are used to improve QSPRs for predicting poly-parameter linear free energy relationship (PPLFER) descriptors for calculating water solubility (SW), vapor pressure (VP) and the octanol–water (KOW), octanol–air (KOA) and air–water (KAW) partition ratios. The new experimental data are only for neutral PFAS, and the QSPRs are only applicable to neutral chemicals. A key PPLFER descriptor for PFAS is the molar volume and this work compares different versions and makes recommendations for obtaining the best PCP predictions. The new models are included in the freely available IFSQSAR package (version 1.1.1), and property predictions are compared to those from the previous IFSQSAR (version 1.1.0) and from QSPRs in the US EPA's EPI Suite (version 4.11) and OPERA (version 2.9) models. The results from the new IFSQSAR models show improvements for predicting PFAS PCPs. The root mean squared error (RMSE) for predicting log KOWversus expected values from quantum chemical calculations was reduced by approximately 1 log unit whereas the RMSE for predicting log KAW and log KOA was reduced by 0.2 log units. IFSQSAR v.1.1.1 has an RMSE one or more log units lower than predictions from OPERA and EPI Suite when compared to expected values of log KOW, log KAW and log KOA for PFAS, except for EPI Suite predictions for log KOW which have a comparable RMSE. Recommendations for future experimental work for PPLFER descriptors for PFAS and future research to improve PCP predictions for PFAS are presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信