物理学启发的进化机器学习方法:从薛定谔方程到轨道-自由-DFT动能函数。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2024-10-10 Epub Date: 2024-09-30 DOI:10.1021/acs.jpca.4c04155
Juan I Rodríguez, Ulises A Vergara-Beltrán
{"title":"物理学启发的进化机器学习方法:从薛定谔方程到轨道-自由-DFT动能函数。","authors":"Juan I Rodríguez, Ulises A Vergara-Beltrán","doi":"10.1021/acs.jpca.4c04155","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce a machine learning (ML)-supervised model function (which is in fact a functional rather than a regular function) that is inspired by the variational principle of physics. This ML hypothesis evolutionary method, termed ML-Ω, allows us to go from data to differential equation(s) underlying the physical (chemical, engineering, etc.) phenomena from which the data are derived from. The fundamental equations of physics can be derived from this ML-Ω evolutionary method when the proper training data is used. By training the ML-Ω model function with only three hydrogen-like atom energies, the method can find Schrödinger's exact functional and, from it, Schrödinger's fundamental equation. Then, in the field of density functional theory (DFT), when the model function is trained with the energies from the known Thomas-Fermi (TF) formula <math><mi>E</mi><mo>=</mo><mo>-</mo><mn>0.7687</mn><msup><mi>Z</mi><mrow><mn>7</mn><mo>/</mo><mn>3</mn></mrow></msup></math>, it correctly finds the exact TF functional. Finally, the method is applied to find a local orbital-free (OF) functional expression of the independent electron kinetic energy functional <i>T</i><sub>s</sub> based on the γ<i>TF</i>λ<i>vW</i> model. By considering the theoretical energies of only five atoms (He, Be, Ne, Mg, and Ar) as the training set, the evolutionary ML-Ω method finds an ML-Ω-OF-DFT local <i>T</i><sub>s</sub> functional (γ<i>TF</i>λ<i>vW</i>(0.964,1/4)) that outperforms all the OF-DFT functionals of a representative group. Moreover, our ML-Ω-OF functional overcomes the difficulty of LDA's and some local generalized gradient approximation (GGA)-DFT's functionals to describe the stretched bond region at the correct spin configuration of diatomic molecules. Nonsmooth and nonclosed form functionals can be considered in the ML-Ω model function and still be effectively trained. Although our evolutionary ML-Ω model function can work without an explicit prior-form functional, by using the techniques of symbolic regression, in this work, we exploit prior-form functional expressions to make the training process simpler and faster. The ML-Ω method can be considered at the intersection of ML and the natural sciences.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"8787-8794"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-Inspired Evolutionary Machine Learning Method: From the Schrödinger Equation to an Orbital-Free-DFT Kinetic Energy Functional.\",\"authors\":\"Juan I Rodríguez, Ulises A Vergara-Beltrán\",\"doi\":\"10.1021/acs.jpca.4c04155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce a machine learning (ML)-supervised model function (which is in fact a functional rather than a regular function) that is inspired by the variational principle of physics. This ML hypothesis evolutionary method, termed ML-Ω, allows us to go from data to differential equation(s) underlying the physical (chemical, engineering, etc.) phenomena from which the data are derived from. The fundamental equations of physics can be derived from this ML-Ω evolutionary method when the proper training data is used. By training the ML-Ω model function with only three hydrogen-like atom energies, the method can find Schrödinger's exact functional and, from it, Schrödinger's fundamental equation. Then, in the field of density functional theory (DFT), when the model function is trained with the energies from the known Thomas-Fermi (TF) formula <math><mi>E</mi><mo>=</mo><mo>-</mo><mn>0.7687</mn><msup><mi>Z</mi><mrow><mn>7</mn><mo>/</mo><mn>3</mn></mrow></msup></math>, it correctly finds the exact TF functional. Finally, the method is applied to find a local orbital-free (OF) functional expression of the independent electron kinetic energy functional <i>T</i><sub>s</sub> based on the γ<i>TF</i>λ<i>vW</i> model. By considering the theoretical energies of only five atoms (He, Be, Ne, Mg, and Ar) as the training set, the evolutionary ML-Ω method finds an ML-Ω-OF-DFT local <i>T</i><sub>s</sub> functional (γ<i>TF</i>λ<i>vW</i>(0.964,1/4)) that outperforms all the OF-DFT functionals of a representative group. Moreover, our ML-Ω-OF functional overcomes the difficulty of LDA's and some local generalized gradient approximation (GGA)-DFT's functionals to describe the stretched bond region at the correct spin configuration of diatomic molecules. Nonsmooth and nonclosed form functionals can be considered in the ML-Ω model function and still be effectively trained. Although our evolutionary ML-Ω model function can work without an explicit prior-form functional, by using the techniques of symbolic regression, in this work, we exploit prior-form functional expressions to make the training process simpler and faster. The ML-Ω method can be considered at the intersection of ML and the natural sciences.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"8787-8794\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04155\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04155","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们受物理学变分原理的启发,引入了一种机器学习(ML)监督模型函数(实际上是一种函数而非规则函数)。这种 ML 假设演化方法被称为 ML-Ω,它使我们能够从数据到微分方程,而微分方程是物理(化学、工程等)现象的基础,数据正是从物理(化学、工程等)现象中衍生出来的。如果使用适当的训练数据,物理学的基本方程可以通过这种 ML-Ω 演化方法推导出来。通过只用三个类氢原子能量训练 ML-Ω 模型函数,该方法可以找到薛定谔精确函数,并由此找到薛定谔基本方程。然后,在密度泛函理论(DFT)领域,当用已知的托马斯-费米(TF)公式 E=-0.7687Z7/3 的能量训练模型函数时,它能正确地找到精确的 TF 函数。最后,该方法被应用于基于 γTFλvW 模型的独立电子动能函数 Ts 的局部无轨道 (OF) 函数表达。考虑到只有五种原子(He、Be、Ne、Mg 和 Ar)的理论能量作为训练集,进化 ML-Ω 方法找到了一种 ML-Ω-OF-DFT 局部 Ts 函数(γTFλvW(0.964,1/4)),其性能优于一个代表组的所有 OF-DFT 函数。此外,我们的 ML-Ω-OF 函数克服了 LDA 函数和一些局部广义梯度近似(GGA)-DFT 函数在描述二原子分子正确自旋构型下的拉伸键区域时遇到的困难。在 ML-Ω 模型函数中可以考虑非光滑和非封闭形式的函数,并且仍然可以有效地进行训练。虽然我们的进化 ML-Ω 模型函数可以在没有明确先验形式函数的情况下工作,但在这项工作中,我们通过使用符号回归技术,利用先验形式函数表达式使训练过程更简单、更快速。ML-Ω 方法可以说是 ML 与自然科学的交汇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-Inspired Evolutionary Machine Learning Method: From the Schrödinger Equation to an Orbital-Free-DFT Kinetic Energy Functional.

We introduce a machine learning (ML)-supervised model function (which is in fact a functional rather than a regular function) that is inspired by the variational principle of physics. This ML hypothesis evolutionary method, termed ML-Ω, allows us to go from data to differential equation(s) underlying the physical (chemical, engineering, etc.) phenomena from which the data are derived from. The fundamental equations of physics can be derived from this ML-Ω evolutionary method when the proper training data is used. By training the ML-Ω model function with only three hydrogen-like atom energies, the method can find Schrödinger's exact functional and, from it, Schrödinger's fundamental equation. Then, in the field of density functional theory (DFT), when the model function is trained with the energies from the known Thomas-Fermi (TF) formula E=-0.7687Z7/3, it correctly finds the exact TF functional. Finally, the method is applied to find a local orbital-free (OF) functional expression of the independent electron kinetic energy functional Ts based on the γTFλvW model. By considering the theoretical energies of only five atoms (He, Be, Ne, Mg, and Ar) as the training set, the evolutionary ML-Ω method finds an ML-Ω-OF-DFT local Ts functional (γTFλvW(0.964,1/4)) that outperforms all the OF-DFT functionals of a representative group. Moreover, our ML-Ω-OF functional overcomes the difficulty of LDA's and some local generalized gradient approximation (GGA)-DFT's functionals to describe the stretched bond region at the correct spin configuration of diatomic molecules. Nonsmooth and nonclosed form functionals can be considered in the ML-Ω model function and still be effectively trained. Although our evolutionary ML-Ω model function can work without an explicit prior-form functional, by using the techniques of symbolic regression, in this work, we exploit prior-form functional expressions to make the training process simpler and faster. The ML-Ω method can be considered at the intersection of ML and the natural sciences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信