氧化还原交替条件下含有多种金属污染物的水稻土团聚体中的水体和胶体动力学。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Ming Zhou, Pengjie Hu, Jiajia Wang, Xingxing Wang, Fengwu Zhou, Xiangmei Zhai, Zezhen Pan, Longhua Wu, Zimeng Wang
{"title":"氧化还原交替条件下含有多种金属污染物的水稻土团聚体中的水体和胶体动力学。","authors":"Ming Zhou, Pengjie Hu, Jiajia Wang, Xingxing Wang, Fengwu Zhou, Xiangmei Zhai, Zezhen Pan, Longhua Wu, Zimeng Wang","doi":"10.1021/acs.est.4c03116","DOIUrl":null,"url":null,"abstract":"<p><p>Soil contamination by multiple metals is a significant concern due to the interlinked mobilization processes. The challenges in comprehending this issue arise from the poorly characterized interaction among different metals and the complexities introduced by spatial and temporal heterogeneity in soil systems. We delved into these complexities by incubating size-fractionated paddy soils under both anaerobic and aerobic conditions, utilizing a combination of techniques for aqueous and colloidal analysis. The contaminated paddy soil predominantly consisted of particles measuring <53, 250-53, and 2000-250 μm, with the <53 μm fractions exhibiting the highest concentrations of multiple metals. Interestingly, despite their higher overall content, the <53 μm fractions released less dissolved metal. Furthermore, glucose enhanced the release of arsenic while simultaneously promoting the sequestration of other metals, such as Pb, Zn, and Cu. Utilizing asymmetric flow field-flow fractionation, we unveiled the presence of both fine (0.3-130 kDa) and large (130-450 nm) colloidal pools, each carrying various metals with different affinities for iron minerals and organic matter. Our results highlighted the pivotal role of the <53 μm fraction as a significant reservoir for multiple metal contaminants in paddy soils, in which the colloidal metals were mainly associated with organic matter. These findings illuminated the size-resolved dynamics of soil metal cycling and provided insights for developing remediation strategies for metal-contaminated soil ecosystems.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous and Colloidal Dynamics in Size-Fractionated Paddy Soil Aggregates with Multiple Metal Contaminants under Redox Alternations.\",\"authors\":\"Ming Zhou, Pengjie Hu, Jiajia Wang, Xingxing Wang, Fengwu Zhou, Xiangmei Zhai, Zezhen Pan, Longhua Wu, Zimeng Wang\",\"doi\":\"10.1021/acs.est.4c03116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil contamination by multiple metals is a significant concern due to the interlinked mobilization processes. The challenges in comprehending this issue arise from the poorly characterized interaction among different metals and the complexities introduced by spatial and temporal heterogeneity in soil systems. We delved into these complexities by incubating size-fractionated paddy soils under both anaerobic and aerobic conditions, utilizing a combination of techniques for aqueous and colloidal analysis. The contaminated paddy soil predominantly consisted of particles measuring <53, 250-53, and 2000-250 μm, with the <53 μm fractions exhibiting the highest concentrations of multiple metals. Interestingly, despite their higher overall content, the <53 μm fractions released less dissolved metal. Furthermore, glucose enhanced the release of arsenic while simultaneously promoting the sequestration of other metals, such as Pb, Zn, and Cu. Utilizing asymmetric flow field-flow fractionation, we unveiled the presence of both fine (0.3-130 kDa) and large (130-450 nm) colloidal pools, each carrying various metals with different affinities for iron minerals and organic matter. Our results highlighted the pivotal role of the <53 μm fraction as a significant reservoir for multiple metal contaminants in paddy soils, in which the colloidal metals were mainly associated with organic matter. These findings illuminated the size-resolved dynamics of soil metal cycling and provided insights for developing remediation strategies for metal-contaminated soil ecosystems.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c03116\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c03116","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于相互关联的迁移过程,多种金属对土壤的污染是一个重大问题。由于不同金属之间的相互作用特征不明显,以及土壤系统的时空异质性所带来的复杂性,理解这一问题面临挑战。我们通过在厌氧和有氧条件下培养大小分馏的水稻土,并利用水体和胶体分析的组合技术,对这些复杂性进行了深入研究。受污染的稻田土壤主要由颗粒组成,这些颗粒的尺寸为
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Aqueous and Colloidal Dynamics in Size-Fractionated Paddy Soil Aggregates with Multiple Metal Contaminants under Redox Alternations.

Aqueous and Colloidal Dynamics in Size-Fractionated Paddy Soil Aggregates with Multiple Metal Contaminants under Redox Alternations.

Soil contamination by multiple metals is a significant concern due to the interlinked mobilization processes. The challenges in comprehending this issue arise from the poorly characterized interaction among different metals and the complexities introduced by spatial and temporal heterogeneity in soil systems. We delved into these complexities by incubating size-fractionated paddy soils under both anaerobic and aerobic conditions, utilizing a combination of techniques for aqueous and colloidal analysis. The contaminated paddy soil predominantly consisted of particles measuring <53, 250-53, and 2000-250 μm, with the <53 μm fractions exhibiting the highest concentrations of multiple metals. Interestingly, despite their higher overall content, the <53 μm fractions released less dissolved metal. Furthermore, glucose enhanced the release of arsenic while simultaneously promoting the sequestration of other metals, such as Pb, Zn, and Cu. Utilizing asymmetric flow field-flow fractionation, we unveiled the presence of both fine (0.3-130 kDa) and large (130-450 nm) colloidal pools, each carrying various metals with different affinities for iron minerals and organic matter. Our results highlighted the pivotal role of the <53 μm fraction as a significant reservoir for multiple metal contaminants in paddy soils, in which the colloidal metals were mainly associated with organic matter. These findings illuminated the size-resolved dynamics of soil metal cycling and provided insights for developing remediation strategies for metal-contaminated soil ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信