{"title":"粒状水凝胶的粘弹性能与其作为嵌入式生物打印支撑材料的性能之间的关系","authors":"Noy Hen, Elinor Josef, Maya Davidovich-Pinhas, Shulamit Levenberg, Havazelet Bianco-Peled","doi":"10.1021/acsbiomaterials.4c01136","DOIUrl":null,"url":null,"abstract":"<p><p>Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting.\",\"authors\":\"Noy Hen, Elinor Josef, Maya Davidovich-Pinhas, Shulamit Levenberg, Havazelet Bianco-Peled\",\"doi\":\"10.1021/acsbiomaterials.4c01136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01136\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01136","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting.
Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture