用于协同抑制呼吸道合胞病毒的天然二元草药小分子自组装纳米凝胶

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dandan Song, Chang Lu, Chenqi Chang, Jianjian Ji, Lili Lin, Yue Liu, Huizhu Li, Linwei Chen, Zhipeng Chen, Rui Chen
{"title":"用于协同抑制呼吸道合胞病毒的天然二元草药小分子自组装纳米凝胶","authors":"Dandan Song, Chang Lu, Chenqi Chang, Jianjian Ji, Lili Lin, Yue Liu, Huizhu Li, Linwei Chen, Zhipeng Chen, Rui Chen","doi":"10.1021/acsbiomaterials.4c01227","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory syncytial virus (RSV) is one of the most significant pathogenic infections in childhood, associated with high morbidity and mortality rates. Currently, there is no effective and safe drug or vaccine available for RSV. Glycyrrhizic acid (GA), an active compound derived from the natural herb licorice, has been reported to provide protection against influenza and coronaviruses, exhibiting notable antiviral and anti-inflammatory properties. Ephedrine (EPH) is a commonly prescribed medication for the treatment of cough and asthma, and it also demonstrates certain antiviral effects. In this study, EPH and GA were combined to form an efficient nanomaterial (EPH-GA nanogel). The self-assembly of this nanogel is driven by hydrogen bonding and hydrophobic interactions, allowing it to serve as an antiviral nanomedicine without the need for a dual-component carrier, achieving a 100% drug loading efficiency. Oral administration of the EPH-GA nanogel significantly reduced viral load in the lungs of mice and improved lung lesions and tissue infiltration caused by RSV. Notably, we discovered that the assembled drug may create a \"physical barrier\" that prevents RSV from adsorbing to host cells, while free GA and EPH may compete with RSV for protein binding sites, thereby enhancing cellular uptake of EPH. Consequently, this prevents RSV infection and proliferation within host cells. Furthermore, the EC<sub>50</sub> values changed from 310.83 μM for EPH and 262.88 μM for GA to 68.25 μM for the EPH-GA combination, with a combination index of 0.458. In addition, the in vivo biopharmaceutic process of GA and EPH was investigated, revealing that the oral administration of EPH-GA significantly increased the bioavailability of EPH while maintaining its plasma concentration at a relatively stable level. This enhancement may contribute to a synergistic antiviral effect when combined with GA. Furthermore, the in vivo process of EPH-GA demonstrates the advantage of delivering the drug to the lesion at elevated levels, thereby facilitating its antiviral mechanism at the cellular level. In this study, we identified an effective nanomedicine, EPH-GA nanogel, which can inhibit the proliferation of RSV and mitigate lung lesions resulting from viral infection by influencing the biopharmaceutical process in vivo. This research not only offers a novel strategy for the nanomedicine treatment of RSV but also elucidates, to some extent, the compatibility mechanisms of the multicomponents of traditional Chinese medicine.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Binary Herbal Small Molecules Self-Assembled Nanogel for Synergistic Inhibition of Respiratory Syncytial Virus.\",\"authors\":\"Dandan Song, Chang Lu, Chenqi Chang, Jianjian Ji, Lili Lin, Yue Liu, Huizhu Li, Linwei Chen, Zhipeng Chen, Rui Chen\",\"doi\":\"10.1021/acsbiomaterials.4c01227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Respiratory syncytial virus (RSV) is one of the most significant pathogenic infections in childhood, associated with high morbidity and mortality rates. Currently, there is no effective and safe drug or vaccine available for RSV. Glycyrrhizic acid (GA), an active compound derived from the natural herb licorice, has been reported to provide protection against influenza and coronaviruses, exhibiting notable antiviral and anti-inflammatory properties. Ephedrine (EPH) is a commonly prescribed medication for the treatment of cough and asthma, and it also demonstrates certain antiviral effects. In this study, EPH and GA were combined to form an efficient nanomaterial (EPH-GA nanogel). The self-assembly of this nanogel is driven by hydrogen bonding and hydrophobic interactions, allowing it to serve as an antiviral nanomedicine without the need for a dual-component carrier, achieving a 100% drug loading efficiency. Oral administration of the EPH-GA nanogel significantly reduced viral load in the lungs of mice and improved lung lesions and tissue infiltration caused by RSV. Notably, we discovered that the assembled drug may create a \\\"physical barrier\\\" that prevents RSV from adsorbing to host cells, while free GA and EPH may compete with RSV for protein binding sites, thereby enhancing cellular uptake of EPH. Consequently, this prevents RSV infection and proliferation within host cells. Furthermore, the EC<sub>50</sub> values changed from 310.83 μM for EPH and 262.88 μM for GA to 68.25 μM for the EPH-GA combination, with a combination index of 0.458. In addition, the in vivo biopharmaceutic process of GA and EPH was investigated, revealing that the oral administration of EPH-GA significantly increased the bioavailability of EPH while maintaining its plasma concentration at a relatively stable level. This enhancement may contribute to a synergistic antiviral effect when combined with GA. Furthermore, the in vivo process of EPH-GA demonstrates the advantage of delivering the drug to the lesion at elevated levels, thereby facilitating its antiviral mechanism at the cellular level. In this study, we identified an effective nanomedicine, EPH-GA nanogel, which can inhibit the proliferation of RSV and mitigate lung lesions resulting from viral infection by influencing the biopharmaceutical process in vivo. This research not only offers a novel strategy for the nanomedicine treatment of RSV but also elucidates, to some extent, the compatibility mechanisms of the multicomponents of traditional Chinese medicine.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acsbiomaterials.4c01227\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

呼吸道合胞病毒(RSV)是儿童期最重要的致病性感染之一,发病率和死亡率都很高。目前,还没有针对 RSV 的有效而安全的药物或疫苗。甘草酸(GA)是从天然草本植物甘草中提取的一种活性化合物,据报道,甘草酸可预防流感和冠状病毒,具有显著的抗病毒和抗炎特性。麻黄碱(EPH)是治疗咳嗽和哮喘的常用处方药,也具有一定的抗病毒作用。在这项研究中,EPH 与 GA 结合形成了一种高效纳米材料(EPH-GA 纳米凝胶)。这种纳米凝胶的自组装是由氢键和疏水相互作用驱动的,因此无需双组分载体即可作为抗病毒纳米药物,药物负载效率达到 100%。口服 EPH-GA 纳米凝胶能显著降低小鼠肺部的病毒载量,改善 RSV 引起的肺部病变和组织浸润。值得注意的是,我们发现组装好的药物可能会形成一道 "物理屏障",阻止 RSV 吸附到宿主细胞上,而游离的 GA 和 EPH 可能会与 RSV 争夺蛋白质结合位点,从而提高细胞对 EPH 的吸收。因此,这就阻止了 RSV 在宿主细胞内的感染和增殖。此外,EPH 和 GA 的 EC50 值从 EPH 的 310.83 μM 和 GA 的 262.88 μM 变为 EPH-GA 组合的 68.25 μM,组合指数为 0.458。此外,还研究了 GA 和 EPH 的体内生物制药过程,发现口服 EPH-GA 能显著提高 EPH 的生物利用度,同时使其血浆浓度保持在相对稳定的水平。当与 GA 合用时,这种增强作用可能有助于产生协同抗病毒效果。此外,EPH-GA 在体内的使用过程表明,它具有将药物输送到病变部位的优势,从而促进其在细胞水平的抗病毒机制。在这项研究中,我们发现了一种有效的纳米药物 EPH-GA 纳米凝胶,它可以通过影响体内生物制药过程来抑制 RSV 的增殖,减轻病毒感染导致的肺部病变。这项研究不仅为纳米药物治疗RSV提供了一种新策略,而且在一定程度上阐明了中药多成分的相容机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Binary Herbal Small Molecules Self-Assembled Nanogel for Synergistic Inhibition of Respiratory Syncytial Virus.

Respiratory syncytial virus (RSV) is one of the most significant pathogenic infections in childhood, associated with high morbidity and mortality rates. Currently, there is no effective and safe drug or vaccine available for RSV. Glycyrrhizic acid (GA), an active compound derived from the natural herb licorice, has been reported to provide protection against influenza and coronaviruses, exhibiting notable antiviral and anti-inflammatory properties. Ephedrine (EPH) is a commonly prescribed medication for the treatment of cough and asthma, and it also demonstrates certain antiviral effects. In this study, EPH and GA were combined to form an efficient nanomaterial (EPH-GA nanogel). The self-assembly of this nanogel is driven by hydrogen bonding and hydrophobic interactions, allowing it to serve as an antiviral nanomedicine without the need for a dual-component carrier, achieving a 100% drug loading efficiency. Oral administration of the EPH-GA nanogel significantly reduced viral load in the lungs of mice and improved lung lesions and tissue infiltration caused by RSV. Notably, we discovered that the assembled drug may create a "physical barrier" that prevents RSV from adsorbing to host cells, while free GA and EPH may compete with RSV for protein binding sites, thereby enhancing cellular uptake of EPH. Consequently, this prevents RSV infection and proliferation within host cells. Furthermore, the EC50 values changed from 310.83 μM for EPH and 262.88 μM for GA to 68.25 μM for the EPH-GA combination, with a combination index of 0.458. In addition, the in vivo biopharmaceutic process of GA and EPH was investigated, revealing that the oral administration of EPH-GA significantly increased the bioavailability of EPH while maintaining its plasma concentration at a relatively stable level. This enhancement may contribute to a synergistic antiviral effect when combined with GA. Furthermore, the in vivo process of EPH-GA demonstrates the advantage of delivering the drug to the lesion at elevated levels, thereby facilitating its antiviral mechanism at the cellular level. In this study, we identified an effective nanomedicine, EPH-GA nanogel, which can inhibit the proliferation of RSV and mitigate lung lesions resulting from viral infection by influencing the biopharmaceutical process in vivo. This research not only offers a novel strategy for the nanomedicine treatment of RSV but also elucidates, to some extent, the compatibility mechanisms of the multicomponents of traditional Chinese medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信