Vanlal Rempuia, Guruswami Gurusubramanian, Vikas Kumar Roy
{"title":"睾丸内的粘蛋白抑制会破坏小鼠睾丸中的雄激素和雌激素信号。","authors":"Vanlal Rempuia, Guruswami Gurusubramanian, Vikas Kumar Roy","doi":"10.1016/j.repbio.2024.100956","DOIUrl":null,"url":null,"abstract":"<div><div>Visfatin is expressed in the testis of chicken, humans and rodents; however, direct role of visfatin in the adult testis has not been studied. We investigated testicular responses after intra-testicular injection of FK866. The effects of visfatin inhibition were accessed at 24 hrs and 1 week post FK866 treatment. The testicular histoarchitecture were degenerated after 24 hrs of FK866 treatment along with supressed testosterone and proliferating markers and resumption in these parameters showed after 1 week. The expression of AR and ERα were down-regulated after 1 week of FK866 treatment. The expression of BCl2 was down-regulated along with a slight elevation of caspase3 after 24 hrs; however, both proteins still showed suppressed expression after 1 week. Furthermore, ERβ expression, 3βHSD, and 17βHSD were down-regulated in both groups compared to the control. Despite the down-regulation of some factors, the testicular proliferation and histoarchitecture showed resumption in the testis after 1 week of FK866 treatment. This could be due to increased testosterone secretion by suppressing aromatase expression. In conclusion, our result is the first report on the direct role of visfatin in the adult testis. Visfatin has a stimulatory role in testosterone synthesis and proliferation in the testis. Moreover, some deregulated factors in the testis after 1 week of FK866 treatment, despite normal histoarchitecture treatment, could be a compensatory mechanism after visfatin inhibitions.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intra-testicular visfatin inhibition disrupts androgen and estrogen signalling in the mouse testis\",\"authors\":\"Vanlal Rempuia, Guruswami Gurusubramanian, Vikas Kumar Roy\",\"doi\":\"10.1016/j.repbio.2024.100956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visfatin is expressed in the testis of chicken, humans and rodents; however, direct role of visfatin in the adult testis has not been studied. We investigated testicular responses after intra-testicular injection of FK866. The effects of visfatin inhibition were accessed at 24 hrs and 1 week post FK866 treatment. The testicular histoarchitecture were degenerated after 24 hrs of FK866 treatment along with supressed testosterone and proliferating markers and resumption in these parameters showed after 1 week. The expression of AR and ERα were down-regulated after 1 week of FK866 treatment. The expression of BCl2 was down-regulated along with a slight elevation of caspase3 after 24 hrs; however, both proteins still showed suppressed expression after 1 week. Furthermore, ERβ expression, 3βHSD, and 17βHSD were down-regulated in both groups compared to the control. Despite the down-regulation of some factors, the testicular proliferation and histoarchitecture showed resumption in the testis after 1 week of FK866 treatment. This could be due to increased testosterone secretion by suppressing aromatase expression. In conclusion, our result is the first report on the direct role of visfatin in the adult testis. Visfatin has a stimulatory role in testosterone synthesis and proliferation in the testis. Moreover, some deregulated factors in the testis after 1 week of FK866 treatment, despite normal histoarchitecture treatment, could be a compensatory mechanism after visfatin inhibitions.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1642431X24001025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642431X24001025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Intra-testicular visfatin inhibition disrupts androgen and estrogen signalling in the mouse testis
Visfatin is expressed in the testis of chicken, humans and rodents; however, direct role of visfatin in the adult testis has not been studied. We investigated testicular responses after intra-testicular injection of FK866. The effects of visfatin inhibition were accessed at 24 hrs and 1 week post FK866 treatment. The testicular histoarchitecture were degenerated after 24 hrs of FK866 treatment along with supressed testosterone and proliferating markers and resumption in these parameters showed after 1 week. The expression of AR and ERα were down-regulated after 1 week of FK866 treatment. The expression of BCl2 was down-regulated along with a slight elevation of caspase3 after 24 hrs; however, both proteins still showed suppressed expression after 1 week. Furthermore, ERβ expression, 3βHSD, and 17βHSD were down-regulated in both groups compared to the control. Despite the down-regulation of some factors, the testicular proliferation and histoarchitecture showed resumption in the testis after 1 week of FK866 treatment. This could be due to increased testosterone secretion by suppressing aromatase expression. In conclusion, our result is the first report on the direct role of visfatin in the adult testis. Visfatin has a stimulatory role in testosterone synthesis and proliferation in the testis. Moreover, some deregulated factors in the testis after 1 week of FK866 treatment, despite normal histoarchitecture treatment, could be a compensatory mechanism after visfatin inhibitions.