基于参数估计算法的低功率 LED 灯数值谐波建模。

Hasan A Abdulmajeed Salbi, Fahad Al-Amyal, Kiss Péter
{"title":"基于参数估计算法的低功率 LED 灯数值谐波建模。","authors":"Hasan A Abdulmajeed Salbi, Fahad Al-Amyal, Kiss Péter","doi":"10.1016/j.isatra.2024.09.016","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a numerical harmonic modeling approach for 18 low-wattage Light-Emitting Diode (LED) lamps. The proposed methodology utilizes meta-heuristic algorithms, namely Multi-Stage Ant Colony Optimization (MSACO) and Harris Hawk Optimization (HHO), to estimate optimal parameters for the equivalent circuits. Additionally, the study examines eight different configurations of Electromagnetic Interference (EMI) Filter circuits, including their respective parameters, which function as front-end circuits for the Full Bridge Rectifier (FBR) of the LED drivers. Through extensive investigations, the primary objective is to establish generalized and accurate models for various EMI filter circuits that can be universally applied, with validation through comparison against experimental results. Under both MSACO and HHO, the lowest average total error ranges were observed in the LC-Filter and CL-Filter configurations, with errors ranging from 21.302 % and 22.769 %, respectively. On the other hand, the L-Filter and R-only configurations exhibited the highest average total error ranges, with errors of 42.376 % and 44.648 %, respectively. Notably, this paper introduces a non-intrusive, non-invasive method for estimating optimal parameters based solely on measurements obtained from the input terminals of the LED lamps.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical harmonic modelling of low wattage LED lamps based on parameter estimation algorithms.\",\"authors\":\"Hasan A Abdulmajeed Salbi, Fahad Al-Amyal, Kiss Péter\",\"doi\":\"10.1016/j.isatra.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a numerical harmonic modeling approach for 18 low-wattage Light-Emitting Diode (LED) lamps. The proposed methodology utilizes meta-heuristic algorithms, namely Multi-Stage Ant Colony Optimization (MSACO) and Harris Hawk Optimization (HHO), to estimate optimal parameters for the equivalent circuits. Additionally, the study examines eight different configurations of Electromagnetic Interference (EMI) Filter circuits, including their respective parameters, which function as front-end circuits for the Full Bridge Rectifier (FBR) of the LED drivers. Through extensive investigations, the primary objective is to establish generalized and accurate models for various EMI filter circuits that can be universally applied, with validation through comparison against experimental results. Under both MSACO and HHO, the lowest average total error ranges were observed in the LC-Filter and CL-Filter configurations, with errors ranging from 21.302 % and 22.769 %, respectively. On the other hand, the L-Filter and R-only configurations exhibited the highest average total error ranges, with errors of 42.376 % and 44.648 %, respectively. Notably, this paper introduces a non-intrusive, non-invasive method for estimating optimal parameters based solely on measurements obtained from the input terminals of the LED lamps.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.09.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.09.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种针对 18 个低功率发光二极管 (LED) 灯的数值谐波建模方法。所提出的方法利用元启发式算法,即多阶段蚁群优化 (MSACO) 和 Harris Hawk 优化 (HHO),来估计等效电路的最佳参数。此外,研究还考察了八种不同配置的电磁干扰(EMI)滤波器电路,包括其各自的参数,这些电路用作 LED 驱动器全桥整流器(FBR)的前端电路。通过广泛的研究,主要目的是为各种 EMI 滤波器电路建立可普遍应用的通用准确模型,并通过与实验结果的比较进行验证。在 MSACO 和 HHO 条件下,LC 滤波器和 CL 滤波器配置的平均总误差范围最小,误差范围分别为 21.302 % 和 22.769 %。另一方面,L 过滤器和纯 R 配置的平均总误差范围最大,误差分别为 42.376 % 和 44.648 %。值得注意的是,本文介绍了一种非侵入性、非侵入式方法,可仅根据从 LED 灯输入端获得的测量结果来估算最佳参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical harmonic modelling of low wattage LED lamps based on parameter estimation algorithms.

This paper presents a numerical harmonic modeling approach for 18 low-wattage Light-Emitting Diode (LED) lamps. The proposed methodology utilizes meta-heuristic algorithms, namely Multi-Stage Ant Colony Optimization (MSACO) and Harris Hawk Optimization (HHO), to estimate optimal parameters for the equivalent circuits. Additionally, the study examines eight different configurations of Electromagnetic Interference (EMI) Filter circuits, including their respective parameters, which function as front-end circuits for the Full Bridge Rectifier (FBR) of the LED drivers. Through extensive investigations, the primary objective is to establish generalized and accurate models for various EMI filter circuits that can be universally applied, with validation through comparison against experimental results. Under both MSACO and HHO, the lowest average total error ranges were observed in the LC-Filter and CL-Filter configurations, with errors ranging from 21.302 % and 22.769 %, respectively. On the other hand, the L-Filter and R-only configurations exhibited the highest average total error ranges, with errors of 42.376 % and 44.648 %, respectively. Notably, this paper introduces a non-intrusive, non-invasive method for estimating optimal parameters based solely on measurements obtained from the input terminals of the LED lamps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信