Haozhou Cui, Xiangwen Zhong, Haotian Li, Chuanyu Li, Xingchen Dong, Dezan Ji, Landi He, Weidong Zhou
{"title":"用于高效癫痫发作检测的轻量级卷积神经网络-重构器模型","authors":"Haozhou Cui, Xiangwen Zhong, Haotian Li, Chuanyu Li, Xingchen Dong, Dezan Ji, Landi He, Weidong Zhou","doi":"10.1142/S0129065724500655","DOIUrl":null,"url":null,"abstract":"<p><p>A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":" ","pages":"2450065"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection.\",\"authors\":\"Haozhou Cui, Xiangwen Zhong, Haotian Li, Chuanyu Li, Xingchen Dong, Dezan Ji, Landi He, Weidong Zhou\",\"doi\":\"10.1142/S0129065724500655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.</p>\",\"PeriodicalId\":94052,\"journal\":{\"name\":\"International journal of neural systems\",\"volume\":\" \",\"pages\":\"2450065\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of neural systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065724500655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065724500655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A Lightweight Convolutional Neural Network-Reformer Model for Efficient Epileptic Seizure Detection.
A real-time and reliable automatic detection system for epileptic seizures holds significant value in assisting physicians with rapid diagnosis and treatment of epilepsy. Aiming to address this issue, a novel lightweight model called Convolutional Neural Network-Reformer (CNN-Reformer) is proposed for seizure detection on long-term EEG. The CNN-Reformer consists of two main parts: the Data Reshaping (DR) module and the Efficient Attention and Concentration (EAC) module. This framework reduces network parameters while retaining effective feature extraction of multi-channel EEGs, thereby improving model computational efficiency and real-time performance. Initially, the raw EEG signals undergo Discrete Wavelet Transform (DWT) for signal filtering, and then fed into the DR module for data compression and reshaping while preserving local features. Subsequently, these local features are sent to the EAC module to extract global features and perform categorization. Post-processing involving sliding window averaging, thresholding, and collar techniques is further deployed to reduce the false detection rate (FDR) and improve detection performance. On the CHB-MIT scalp EEG dataset, our method achieves an average sensitivity of 97.57%, accuracy of 98.09%, and specificity of 98.11% at segment-based level, and a sensitivity of 96.81%, along with FDR of 0.27/h, and latency of 17.81 s at the event-based level. On the SH-SDU dataset we collected, our method yielded segment-based sensitivity of 94.51%, specificity of 92.83%, and accuracy of 92.81%, along with event-based sensitivity of 94.11%. The average testing time for 1[Formula: see text]h of multi-channel EEG signals is 1.92[Formula: see text]s. The excellent results and fast computational speed of the CNN-Reformer model demonstrate its potential for efficient seizure detection.