Jonathan A. Walter, Jeff W. Atkins, Catherine M. Hulshof
{"title":"气候和地形控制着热带干旱森林-雨林生态区的变化。","authors":"Jonathan A. Walter, Jeff W. Atkins, Catherine M. Hulshof","doi":"10.1002/ecy.4442","DOIUrl":null,"url":null,"abstract":"<p>Ecotones are the transition zones between ecosystems and can exhibit steep gradients in ecosystem properties controlling flows of energy and organisms between them. Ecotones are understood to be sensitive to climate and environmental changes, but the potential for spatiotemporal dynamics of ecotones to act as indicators of such changes is limited by methodological and logistical constraints. Here, we use a novel combination of satellite remote sensing and analyses of spatial synchrony to identify the tropical dry forest–rainforest ecotone in Area de Conservación Guanacaste, Costa Rica. We further examine how climate and topography influence the spatiotemporal dynamics of the ecotone, showing that ecotone is most prevalent at mid-elevations where the topography leads to moisture accumulation and that climatic moisture availability influences up and downslope interannual variation in ecotone location. We found some evidence for long-term (22 year) trends toward upslope or downslope ecotone shifts, but stronger evidence that regional climate mediates topographic controls on ecotone properties. Our findings suggest the ecotone boundary on the dry forest side may be less resilient to future precipitation reductions and that if drought frequency increases, ecotone reductions are more likely to occur along the dry forest boundary.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4442","citationCount":"0","resultStr":"{\"title\":\"Climate and topography control variation in the tropical dry forest–rainforest ecotone\",\"authors\":\"Jonathan A. Walter, Jeff W. Atkins, Catherine M. Hulshof\",\"doi\":\"10.1002/ecy.4442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ecotones are the transition zones between ecosystems and can exhibit steep gradients in ecosystem properties controlling flows of energy and organisms between them. Ecotones are understood to be sensitive to climate and environmental changes, but the potential for spatiotemporal dynamics of ecotones to act as indicators of such changes is limited by methodological and logistical constraints. Here, we use a novel combination of satellite remote sensing and analyses of spatial synchrony to identify the tropical dry forest–rainforest ecotone in Area de Conservación Guanacaste, Costa Rica. We further examine how climate and topography influence the spatiotemporal dynamics of the ecotone, showing that ecotone is most prevalent at mid-elevations where the topography leads to moisture accumulation and that climatic moisture availability influences up and downslope interannual variation in ecotone location. We found some evidence for long-term (22 year) trends toward upslope or downslope ecotone shifts, but stronger evidence that regional climate mediates topographic controls on ecotone properties. Our findings suggest the ecotone boundary on the dry forest side may be less resilient to future precipitation reductions and that if drought frequency increases, ecotone reductions are more likely to occur along the dry forest boundary.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecy.4442\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4442\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4442","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Climate and topography control variation in the tropical dry forest–rainforest ecotone
Ecotones are the transition zones between ecosystems and can exhibit steep gradients in ecosystem properties controlling flows of energy and organisms between them. Ecotones are understood to be sensitive to climate and environmental changes, but the potential for spatiotemporal dynamics of ecotones to act as indicators of such changes is limited by methodological and logistical constraints. Here, we use a novel combination of satellite remote sensing and analyses of spatial synchrony to identify the tropical dry forest–rainforest ecotone in Area de Conservación Guanacaste, Costa Rica. We further examine how climate and topography influence the spatiotemporal dynamics of the ecotone, showing that ecotone is most prevalent at mid-elevations where the topography leads to moisture accumulation and that climatic moisture availability influences up and downslope interannual variation in ecotone location. We found some evidence for long-term (22 year) trends toward upslope or downslope ecotone shifts, but stronger evidence that regional climate mediates topographic controls on ecotone properties. Our findings suggest the ecotone boundary on the dry forest side may be less resilient to future precipitation reductions and that if drought frequency increases, ecotone reductions are more likely to occur along the dry forest boundary.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.