Christina Zeitler, Steffen Braune, Peter Waldeck, Conrad G H Jung, Jan-Heiner Küpper, Ingolf Petrick, Friedrich Jung
{"title":"Arthrospira platensis 对氮耗竭的反应以及水提取物对肿瘤细胞和非肿瘤细胞的影响。","authors":"Christina Zeitler, Steffen Braune, Peter Waldeck, Conrad G H Jung, Jan-Heiner Küpper, Ingolf Petrick, Friedrich Jung","doi":"10.3233/CH-248108","DOIUrl":null,"url":null,"abstract":"<p><p>The microalgae Arthrospira platensis (AP), commonly known as Spirulina, has gained widespread popularity as a food supplement in recent years. AP is particularly abundant in protein, B vitamins, iron, magnesium, potassium, and various antioxidants. In this study we aimed to evaluate the effect of nitrate limitation in the AP culture medium on AP growth and composition. In addition, the cytotoxicity of the respective aqueous AP extracts on three different mammalian cell-lines (HepG2, Caco2, L929) was tested. AP was cultivated over a 10-day period under nitrogen-rich (Nrich: 1.8 g/L) and nitrogen-deficient (Nlimited: 0.2-0.4 g/L) conditions in two separate experiments, each with three biological replicates (three bioreactors). Throughout the cultivation, the kinetic progress of dry biomass, pH, pigment content, the levels of essential elements (sulphur, phosphate, and nitrate) and the composition of elements in the harvested biomass was determined. While the biomass slightly but significantly differed, the phycocyanin concentration differed considerably (around 10-fold higher in the Nrich medium, p < 0.05). Aqueous extracts of the Nrich medium had significantly stronger effects on the cell membrane integrity and the metabolic activity of the cells than extracts of the Nlimited medium. Particularly was the finding that AP had a significantly stronger toxic effect on the two tumour cell types (HepG2, Caco2) than on the non-tumour cells (L929). This study underscores the significance of nitrate content in the cultivation media of AP.</p>","PeriodicalId":93943,"journal":{"name":"Clinical hemorheology and microcirculation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of Arthrospira platensis to nitrogen depletion and the effect of aqueous extracts on tumor and non-tumor cells.\",\"authors\":\"Christina Zeitler, Steffen Braune, Peter Waldeck, Conrad G H Jung, Jan-Heiner Küpper, Ingolf Petrick, Friedrich Jung\",\"doi\":\"10.3233/CH-248108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microalgae Arthrospira platensis (AP), commonly known as Spirulina, has gained widespread popularity as a food supplement in recent years. AP is particularly abundant in protein, B vitamins, iron, magnesium, potassium, and various antioxidants. In this study we aimed to evaluate the effect of nitrate limitation in the AP culture medium on AP growth and composition. In addition, the cytotoxicity of the respective aqueous AP extracts on three different mammalian cell-lines (HepG2, Caco2, L929) was tested. AP was cultivated over a 10-day period under nitrogen-rich (Nrich: 1.8 g/L) and nitrogen-deficient (Nlimited: 0.2-0.4 g/L) conditions in two separate experiments, each with three biological replicates (three bioreactors). Throughout the cultivation, the kinetic progress of dry biomass, pH, pigment content, the levels of essential elements (sulphur, phosphate, and nitrate) and the composition of elements in the harvested biomass was determined. While the biomass slightly but significantly differed, the phycocyanin concentration differed considerably (around 10-fold higher in the Nrich medium, p < 0.05). Aqueous extracts of the Nrich medium had significantly stronger effects on the cell membrane integrity and the metabolic activity of the cells than extracts of the Nlimited medium. Particularly was the finding that AP had a significantly stronger toxic effect on the two tumour cell types (HepG2, Caco2) than on the non-tumour cells (L929). This study underscores the significance of nitrate content in the cultivation media of AP.</p>\",\"PeriodicalId\":93943,\"journal\":{\"name\":\"Clinical hemorheology and microcirculation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical hemorheology and microcirculation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/CH-248108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical hemorheology and microcirculation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/CH-248108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
微藻 Arthrospira platensis(AP),俗称螺旋藻,近年来作为一种食品补充剂广受欢迎。螺旋藻含有丰富的蛋白质、B族维生素、铁、镁、钾和各种抗氧化剂。本研究旨在评估 AP 培养基中硝酸盐限制对 AP 生长和组成的影响。此外,我们还测试了各自的 AP 水提取物对三种不同哺乳动物细胞系(HepG2、Caco2 和 L929)的细胞毒性。在富氮(Nrich:1.8 g/L)和缺氮(Nlimited:0.2-0.4 g/L)条件下,分别进行了两次为期 10 天的 AP 培养实验,每次实验有三个生物重复(三个生物反应器)。在整个培养过程中,测定了干生物量、pH 值、色素含量、必需元素(硫、磷酸盐和硝酸盐)的水平以及收获生物量中的元素组成。虽然生物量略有显著差异,但藻类花青素的浓度差异很大(富含氮培养基的藻类花青素浓度比富含磷培养基的高 10 倍左右,p
Response of Arthrospira platensis to nitrogen depletion and the effect of aqueous extracts on tumor and non-tumor cells.
The microalgae Arthrospira platensis (AP), commonly known as Spirulina, has gained widespread popularity as a food supplement in recent years. AP is particularly abundant in protein, B vitamins, iron, magnesium, potassium, and various antioxidants. In this study we aimed to evaluate the effect of nitrate limitation in the AP culture medium on AP growth and composition. In addition, the cytotoxicity of the respective aqueous AP extracts on three different mammalian cell-lines (HepG2, Caco2, L929) was tested. AP was cultivated over a 10-day period under nitrogen-rich (Nrich: 1.8 g/L) and nitrogen-deficient (Nlimited: 0.2-0.4 g/L) conditions in two separate experiments, each with three biological replicates (three bioreactors). Throughout the cultivation, the kinetic progress of dry biomass, pH, pigment content, the levels of essential elements (sulphur, phosphate, and nitrate) and the composition of elements in the harvested biomass was determined. While the biomass slightly but significantly differed, the phycocyanin concentration differed considerably (around 10-fold higher in the Nrich medium, p < 0.05). Aqueous extracts of the Nrich medium had significantly stronger effects on the cell membrane integrity and the metabolic activity of the cells than extracts of the Nlimited medium. Particularly was the finding that AP had a significantly stronger toxic effect on the two tumour cell types (HepG2, Caco2) than on the non-tumour cells (L929). This study underscores the significance of nitrate content in the cultivation media of AP.