{"title":"竞技游戏中生理系统的动态互动:网络生理学的启示--案例报告。","authors":"Andreas Stamatis, Grant B Morgan, Jorge C Reyes","doi":"10.3389/fnetp.2024.1438073","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the dynamic interactions between physiological systems during competitive gaming, utilizing a Network Physiology approach. By examining the physiological responses of a gamer with attention-deficit/hyperactivity disorder playing a real-time strategy game, we explore the relationships and temporal lag effects between pupil dilation, skin temperature, and heart rate. Our findings highlight the interconnectedness of these physiological systems and demonstrate how different physiological states are associated with unique patterns of network interactions. The study employs the concept of Time Delay Stability towards a deeper understanding of the complex dynamics involved. This research contributes to the growing field of Network Physiology by offering new insights into the physiological underpinnings of competitive gaming, potentially informing targeted training and recovery protocols for eSports athletes.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"4 ","pages":"1438073"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422231/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamic interactions of physiological systems during competitive gaming: insights from network physiology - case report.\",\"authors\":\"Andreas Stamatis, Grant B Morgan, Jorge C Reyes\",\"doi\":\"10.3389/fnetp.2024.1438073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the dynamic interactions between physiological systems during competitive gaming, utilizing a Network Physiology approach. By examining the physiological responses of a gamer with attention-deficit/hyperactivity disorder playing a real-time strategy game, we explore the relationships and temporal lag effects between pupil dilation, skin temperature, and heart rate. Our findings highlight the interconnectedness of these physiological systems and demonstrate how different physiological states are associated with unique patterns of network interactions. The study employs the concept of Time Delay Stability towards a deeper understanding of the complex dynamics involved. This research contributes to the growing field of Network Physiology by offering new insights into the physiological underpinnings of competitive gaming, potentially informing targeted training and recovery protocols for eSports athletes.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"4 \",\"pages\":\"1438073\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2024.1438073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2024.1438073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic interactions of physiological systems during competitive gaming: insights from network physiology - case report.
This study investigates the dynamic interactions between physiological systems during competitive gaming, utilizing a Network Physiology approach. By examining the physiological responses of a gamer with attention-deficit/hyperactivity disorder playing a real-time strategy game, we explore the relationships and temporal lag effects between pupil dilation, skin temperature, and heart rate. Our findings highlight the interconnectedness of these physiological systems and demonstrate how different physiological states are associated with unique patterns of network interactions. The study employs the concept of Time Delay Stability towards a deeper understanding of the complex dynamics involved. This research contributes to the growing field of Network Physiology by offering new insights into the physiological underpinnings of competitive gaming, potentially informing targeted training and recovery protocols for eSports athletes.