基于深度学习的胸部 X 光图像主动脉伸长检测中的可解释人工智能。

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
European heart journal. Digital health Pub Date : 2024-06-25 eCollection Date: 2024-09-01 DOI:10.1093/ehjdh/ztae045
Estela Ribeiro, Diego A C Cardenas, Felipe M Dias, Jose E Krieger, Marco A Gutierrez
{"title":"基于深度学习的胸部 X 光图像主动脉伸长检测中的可解释人工智能。","authors":"Estela Ribeiro, Diego A C Cardenas, Felipe M Dias, Jose E Krieger, Marco A Gutierrez","doi":"10.1093/ehjdh/ztae045","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Aortic elongation can result from age-related changes, congenital factors, aneurysms, or conditions affecting blood vessel elasticity. It is associated with cardiovascular diseases and severe complications like aortic aneurysms and dissection. We assess qualitatively and quantitatively explainable methods to understand the decisions of a deep learning model for detecting aortic elongation using chest X-ray (CXR) images.</p><p><strong>Methods and results: </strong>In this study, we evaluated the performance of deep learning models (DenseNet and EfficientNet) for detecting aortic elongation using transfer learning and fine-tuning techniques with CXR images as input. EfficientNet achieved higher accuracy (86.7% <math><mo>±</mo></math> 2.1), precision (82.7% <math><mo>±</mo></math> 2.7), specificity (89.4% <math><mo>±</mo></math> 1.7), F1 score (82.5% <math><mo>±</mo></math> 2.9), and area under the receiver operating characteristic (92.7% <math><mo>±</mo></math> 0.6) but lower sensitivity (82.3% <math><mo>±</mo></math> 3.2) compared with DenseNet. To gain insights into the decision-making process of these models, we employed gradient-weighted class activation mapping and local interpretable model-agnostic explanations explainability methods, which enabled us to identify the expected location of aortic elongation in CXR images. Additionally, we used the pixel-flipping method to quantitatively assess the model interpretations, providing valuable insights into model behaviour.</p><p><strong>Conclusion: </strong>Our study presents a comprehensive strategy for analysing CXR images by integrating aortic elongation detection models with explainable artificial intelligence techniques. By enhancing the interpretability and understanding of the models' decisions, this approach holds promise for aiding clinicians in timely and accurate diagnosis, potentially improving patient outcomes in clinical practice.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417491/pdf/","citationCount":"0","resultStr":"{\"title\":\"Explainable artificial intelligence in deep learning-based detection of aortic elongation on chest X-ray images.\",\"authors\":\"Estela Ribeiro, Diego A C Cardenas, Felipe M Dias, Jose E Krieger, Marco A Gutierrez\",\"doi\":\"10.1093/ehjdh/ztae045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Aortic elongation can result from age-related changes, congenital factors, aneurysms, or conditions affecting blood vessel elasticity. It is associated with cardiovascular diseases and severe complications like aortic aneurysms and dissection. We assess qualitatively and quantitatively explainable methods to understand the decisions of a deep learning model for detecting aortic elongation using chest X-ray (CXR) images.</p><p><strong>Methods and results: </strong>In this study, we evaluated the performance of deep learning models (DenseNet and EfficientNet) for detecting aortic elongation using transfer learning and fine-tuning techniques with CXR images as input. EfficientNet achieved higher accuracy (86.7% <math><mo>±</mo></math> 2.1), precision (82.7% <math><mo>±</mo></math> 2.7), specificity (89.4% <math><mo>±</mo></math> 1.7), F1 score (82.5% <math><mo>±</mo></math> 2.9), and area under the receiver operating characteristic (92.7% <math><mo>±</mo></math> 0.6) but lower sensitivity (82.3% <math><mo>±</mo></math> 3.2) compared with DenseNet. To gain insights into the decision-making process of these models, we employed gradient-weighted class activation mapping and local interpretable model-agnostic explanations explainability methods, which enabled us to identify the expected location of aortic elongation in CXR images. Additionally, we used the pixel-flipping method to quantitatively assess the model interpretations, providing valuable insights into model behaviour.</p><p><strong>Conclusion: </strong>Our study presents a comprehensive strategy for analysing CXR images by integrating aortic elongation detection models with explainable artificial intelligence techniques. By enhancing the interpretability and understanding of the models' decisions, this approach holds promise for aiding clinicians in timely and accurate diagnosis, potentially improving patient outcomes in clinical practice.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11417491/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:主动脉伸长可能是由于年龄变化、先天因素、动脉瘤或影响血管弹性的情况造成的。它与心血管疾病以及主动脉瘤和夹层等严重并发症有关。我们评估了可定性和定量解释的方法,以了解深度学习模型利用胸部 X 光(CXR)图像检测主动脉伸长的决策:在这项研究中,我们评估了深度学习模型(DenseNet和EfficientNet)的性能,它们以CXR图像为输入,利用迁移学习和微调技术检测主动脉伸长。与 DenseNet 相比,EfficientNet 的准确性(86.7% ± 2.1)、精确性(82.7% ± 2.7)、特异性(89.4% ± 1.7)、F1 分数(82.5% ± 2.9)和接收者操作特征下面积(92.7% ± 0.6)更高,但灵敏度(82.3% ± 3.2)较低。为了深入了解这些模型的决策过程,我们采用了梯度加权类激活映射和局部可解释模型的可解释性方法,这使我们能够确定 CXR 图像中主动脉伸长的预期位置。此外,我们还使用了像素翻转法来定量评估模型解释,为模型行为提供了有价值的见解:我们的研究通过将主动脉伸长检测模型与可解释的人工智能技术相结合,提出了一种分析 CXR 图像的综合策略。通过提高模型决策的可解释性和可理解性,这种方法有望帮助临床医生进行及时准确的诊断,从而在临床实践中改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable artificial intelligence in deep learning-based detection of aortic elongation on chest X-ray images.

Aims: Aortic elongation can result from age-related changes, congenital factors, aneurysms, or conditions affecting blood vessel elasticity. It is associated with cardiovascular diseases and severe complications like aortic aneurysms and dissection. We assess qualitatively and quantitatively explainable methods to understand the decisions of a deep learning model for detecting aortic elongation using chest X-ray (CXR) images.

Methods and results: In this study, we evaluated the performance of deep learning models (DenseNet and EfficientNet) for detecting aortic elongation using transfer learning and fine-tuning techniques with CXR images as input. EfficientNet achieved higher accuracy (86.7% ± 2.1), precision (82.7% ± 2.7), specificity (89.4% ± 1.7), F1 score (82.5% ± 2.9), and area under the receiver operating characteristic (92.7% ± 0.6) but lower sensitivity (82.3% ± 3.2) compared with DenseNet. To gain insights into the decision-making process of these models, we employed gradient-weighted class activation mapping and local interpretable model-agnostic explanations explainability methods, which enabled us to identify the expected location of aortic elongation in CXR images. Additionally, we used the pixel-flipping method to quantitatively assess the model interpretations, providing valuable insights into model behaviour.

Conclusion: Our study presents a comprehensive strategy for analysing CXR images by integrating aortic elongation detection models with explainable artificial intelligence techniques. By enhancing the interpretability and understanding of the models' decisions, this approach holds promise for aiding clinicians in timely and accurate diagnosis, potentially improving patient outcomes in clinical practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信