基于三元 TiO2/MoS2/ZnO 异质纳米结构的多功能传感设备。

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andrew F. Zhou, Soraya Y. Flores, Elluz Pacheco, Xiaoyan Peng, Susannah G. Zhang, Peter X. Feng
{"title":"基于三元 TiO2/MoS2/ZnO 异质纳米结构的多功能传感设备。","authors":"Andrew F. Zhou,&nbsp;Soraya Y. Flores,&nbsp;Elluz Pacheco,&nbsp;Xiaoyan Peng,&nbsp;Susannah G. Zhang,&nbsp;Peter X. Feng","doi":"10.1186/s11671-024-04112-7","DOIUrl":null,"url":null,"abstract":"<div><p>Novel sensing applications benefit from multifunctional nanomaterials responsive to various external stimuli such as mechanics, electricity, light, humidity, or pollution. While few such materials occur naturally, the careful design of synergized nanomaterials unifies the cross-coupled properties which are weak or absent in single-phase materials. In this study, 2D MoS<sub>2</sub> integrated with ultrathin dielectric oxide layers forms hetero-nanostructures with significant impacts on carrier transport. The ternary TiO<sub>2</sub>/MoS<sub>2</sub>/ZnO hetero-nanostructures, along with their individual properties, improve the performance of multifunctional sensing devices. The synthesized hetero-nanostructure exhibits a responsivity of up to 16 mA/W to 700 nm light and responds to 5 ppm ammonia gas at room temperature. These enhancements are attributed to interface charge transfer and photogating effects. The ternary TiO<sub>2</sub>/MoS<sub>2</sub>/ZnO hetero-nanostructure is compatible with existing semiconductor fabrication technologies, making it feasible to integrate into flexible, lightweight semiconductor devices and circuits. These results may inspire new photodetectors and sensing devices based on two-dimensional (2D) layered materials for IoT applications.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ternary TiO2/MoS2/ZnO hetero-nanostructure based multifunctional sensing devices\",\"authors\":\"Andrew F. Zhou,&nbsp;Soraya Y. Flores,&nbsp;Elluz Pacheco,&nbsp;Xiaoyan Peng,&nbsp;Susannah G. Zhang,&nbsp;Peter X. Feng\",\"doi\":\"10.1186/s11671-024-04112-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel sensing applications benefit from multifunctional nanomaterials responsive to various external stimuli such as mechanics, electricity, light, humidity, or pollution. While few such materials occur naturally, the careful design of synergized nanomaterials unifies the cross-coupled properties which are weak or absent in single-phase materials. In this study, 2D MoS<sub>2</sub> integrated with ultrathin dielectric oxide layers forms hetero-nanostructures with significant impacts on carrier transport. The ternary TiO<sub>2</sub>/MoS<sub>2</sub>/ZnO hetero-nanostructures, along with their individual properties, improve the performance of multifunctional sensing devices. The synthesized hetero-nanostructure exhibits a responsivity of up to 16 mA/W to 700 nm light and responds to 5 ppm ammonia gas at room temperature. These enhancements are attributed to interface charge transfer and photogating effects. The ternary TiO<sub>2</sub>/MoS<sub>2</sub>/ZnO hetero-nanostructure is compatible with existing semiconductor fabrication technologies, making it feasible to integrate into flexible, lightweight semiconductor devices and circuits. These results may inspire new photodetectors and sensing devices based on two-dimensional (2D) layered materials for IoT applications.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-024-04112-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04112-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

新型传感应用得益于能对各种外部刺激(如机械、电、光、湿度或污染)做出反应的多功能纳米材料。虽然天然存在的此类材料很少,但通过精心设计协同纳米材料,可将单相材料中微弱或不存在的交叉耦合特性统一起来。在这项研究中,二维 MoS2 与超薄介电氧化物层结合形成了对载流子传输有重大影响的异质纳米结构。三元 TiO2/MoS2/ZnO 异质纳米结构及其各自的特性可提高多功能传感设备的性能。合成的异质纳米结构对 700 纳米光的响应率高达 16 mA/W,并能在室温下对 5 ppm 的氨气做出响应。这些增强归因于界面电荷转移和光化效应。三元 TiO2/MoS2/ZnO 异质纳米结构与现有的半导体制造技术兼容,因此可以集成到灵活、轻质的半导体器件和电路中。这些成果可能会激发基于二维(2D)层状材料的新型光电探测器和传感设备在物联网领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ternary TiO2/MoS2/ZnO hetero-nanostructure based multifunctional sensing devices

Novel sensing applications benefit from multifunctional nanomaterials responsive to various external stimuli such as mechanics, electricity, light, humidity, or pollution. While few such materials occur naturally, the careful design of synergized nanomaterials unifies the cross-coupled properties which are weak or absent in single-phase materials. In this study, 2D MoS2 integrated with ultrathin dielectric oxide layers forms hetero-nanostructures with significant impacts on carrier transport. The ternary TiO2/MoS2/ZnO hetero-nanostructures, along with their individual properties, improve the performance of multifunctional sensing devices. The synthesized hetero-nanostructure exhibits a responsivity of up to 16 mA/W to 700 nm light and responds to 5 ppm ammonia gas at room temperature. These enhancements are attributed to interface charge transfer and photogating effects. The ternary TiO2/MoS2/ZnO hetero-nanostructure is compatible with existing semiconductor fabrication technologies, making it feasible to integrate into flexible, lightweight semiconductor devices and circuits. These results may inspire new photodetectors and sensing devices based on two-dimensional (2D) layered materials for IoT applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信