Yanqin Zhao, Mingkun Wu, Jiangping Mei, Wen Zhao, Yan Jin
{"title":"具有自适应参数的 5-DOF 混合机器人滑模控制。","authors":"Yanqin Zhao, Mingkun Wu, Jiangping Mei, Wen Zhao, Yan Jin","doi":"10.1177/00368504241286381","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the advantages of high stiffness, high precision, high load capacity and large workspace, hybrid robots are applicable to drilling and milling of complicated components with large sizes, for instance car panels. However, the difficulty in establishing an exact dynamic model and external disturbances affect the high accuracy control directly, which will decrease the machining accuracy and thereby affect the machining quality and efficiency of the system. Sliding mode control is an effective approach for high-order nonlinear dynamic systems since that it is very insensitive to disturbances and parameter variations. However, chattering may exist in traditional sliding mode control with fixed parameters, which results from a constant approaching speed. Besides, the approaching speed will affect the chattering strength directly. To solve these problems, a modified sliding mode controller with self-adaptive parameters is proposed to enhance the trajectory-tracking performance of a 5-degree-of-freedom hybrid robot. Firstly, the kinematic model of the robot is established. Then adopting the principle of virtual work, a rigid dynamic model of the robot is built. Based on the built dynamic model, a modified sliding mode control method is developed, of which the approaching speed is dependent on the system state. Finally, the sliding mode controller with self-adaptive parameters is created for a hybrid robot. The proposed sliding mode controller can achieve a rapid approaching speed and suppress chattering simultaneously. Simulation results demonstrate that the proposed modified sliding mode controller can achieve a comparatively accurate and smooth trajectory, which owns good robustness to external disturbances.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483726/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sliding mode control with self-adaptive parameters of a 5-DOF hybrid robot.\",\"authors\":\"Yanqin Zhao, Mingkun Wu, Jiangping Mei, Wen Zhao, Yan Jin\",\"doi\":\"10.1177/00368504241286381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Due to the advantages of high stiffness, high precision, high load capacity and large workspace, hybrid robots are applicable to drilling and milling of complicated components with large sizes, for instance car panels. However, the difficulty in establishing an exact dynamic model and external disturbances affect the high accuracy control directly, which will decrease the machining accuracy and thereby affect the machining quality and efficiency of the system. Sliding mode control is an effective approach for high-order nonlinear dynamic systems since that it is very insensitive to disturbances and parameter variations. However, chattering may exist in traditional sliding mode control with fixed parameters, which results from a constant approaching speed. Besides, the approaching speed will affect the chattering strength directly. To solve these problems, a modified sliding mode controller with self-adaptive parameters is proposed to enhance the trajectory-tracking performance of a 5-degree-of-freedom hybrid robot. Firstly, the kinematic model of the robot is established. Then adopting the principle of virtual work, a rigid dynamic model of the robot is built. Based on the built dynamic model, a modified sliding mode control method is developed, of which the approaching speed is dependent on the system state. Finally, the sliding mode controller with self-adaptive parameters is created for a hybrid robot. The proposed sliding mode controller can achieve a rapid approaching speed and suppress chattering simultaneously. Simulation results demonstrate that the proposed modified sliding mode controller can achieve a comparatively accurate and smooth trajectory, which owns good robustness to external disturbances.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483726/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241286381\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241286381","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Sliding mode control with self-adaptive parameters of a 5-DOF hybrid robot.
Due to the advantages of high stiffness, high precision, high load capacity and large workspace, hybrid robots are applicable to drilling and milling of complicated components with large sizes, for instance car panels. However, the difficulty in establishing an exact dynamic model and external disturbances affect the high accuracy control directly, which will decrease the machining accuracy and thereby affect the machining quality and efficiency of the system. Sliding mode control is an effective approach for high-order nonlinear dynamic systems since that it is very insensitive to disturbances and parameter variations. However, chattering may exist in traditional sliding mode control with fixed parameters, which results from a constant approaching speed. Besides, the approaching speed will affect the chattering strength directly. To solve these problems, a modified sliding mode controller with self-adaptive parameters is proposed to enhance the trajectory-tracking performance of a 5-degree-of-freedom hybrid robot. Firstly, the kinematic model of the robot is established. Then adopting the principle of virtual work, a rigid dynamic model of the robot is built. Based on the built dynamic model, a modified sliding mode control method is developed, of which the approaching speed is dependent on the system state. Finally, the sliding mode controller with self-adaptive parameters is created for a hybrid robot. The proposed sliding mode controller can achieve a rapid approaching speed and suppress chattering simultaneously. Simulation results demonstrate that the proposed modified sliding mode controller can achieve a comparatively accurate and smooth trajectory, which owns good robustness to external disturbances.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.