{"title":"单目和双目观看时,\"前进 \"和 \"后退 \"色彩对图形-地面感知的影响。","authors":"Jaeseon Song, James M Brown","doi":"10.3758/s13414-024-02956-w","DOIUrl":null,"url":null,"abstract":"<p><p>Research on figure-ground perception has consistently found that red images are more likely to be perceived as figure/nearer, yet the mechanisms behind this are not completely clear. The primary theories have pointed to optical chromatic aberrations or cortical mechanisms, such as the antagonistic interactions of the magno-/parvocellular (M/P) systems. Our study explored this color-biased figure-ground perception by examining the duration for which a region was perceived as figure under both binocular and monocular conditions, using all combinations of red, blue, green, and gray. In Experiment 1, we used figure-ground ambiguous Maltese crosses, composed of left- and right-tilting sectors of equal area. In Experiment 2, the crosses were figure-ground biased with size and orientation cues. Here, small sectors of cardinal orientations, likely perceived as figure, were contrasted with larger, obliquely oriented sectors, likely perceived as ground. Under monocular conditions, the results aligned with chromatic aberration predictions: red advanced and blue receded, regardless of size and orientation. However, under binocular conditions, the advancing effect of red continued, but the receding effect of blue was generally not observed. Notably, blue, along with red and green, was more frequently perceived as figure compared to gray. The results under binocular viewing are in line with the expectations of the antagonistic M/P system interactions theory, likely due to the collective input from both eyes, facilitating the anticipated effects. Our findings suggest that color-biased figure-ground perception may arise from the synergistic effect of antagonistic M/P system interactions and other optical and cortical mechanisms, together compensating for chromatic aberrations.</p>","PeriodicalId":55433,"journal":{"name":"Attention Perception & Psychophysics","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of \\\"advancing\\\" and \\\"receding\\\" colors on figure-ground perception under monocular and binocular viewing.\",\"authors\":\"Jaeseon Song, James M Brown\",\"doi\":\"10.3758/s13414-024-02956-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on figure-ground perception has consistently found that red images are more likely to be perceived as figure/nearer, yet the mechanisms behind this are not completely clear. The primary theories have pointed to optical chromatic aberrations or cortical mechanisms, such as the antagonistic interactions of the magno-/parvocellular (M/P) systems. Our study explored this color-biased figure-ground perception by examining the duration for which a region was perceived as figure under both binocular and monocular conditions, using all combinations of red, blue, green, and gray. In Experiment 1, we used figure-ground ambiguous Maltese crosses, composed of left- and right-tilting sectors of equal area. In Experiment 2, the crosses were figure-ground biased with size and orientation cues. Here, small sectors of cardinal orientations, likely perceived as figure, were contrasted with larger, obliquely oriented sectors, likely perceived as ground. Under monocular conditions, the results aligned with chromatic aberration predictions: red advanced and blue receded, regardless of size and orientation. However, under binocular conditions, the advancing effect of red continued, but the receding effect of blue was generally not observed. Notably, blue, along with red and green, was more frequently perceived as figure compared to gray. The results under binocular viewing are in line with the expectations of the antagonistic M/P system interactions theory, likely due to the collective input from both eyes, facilitating the anticipated effects. Our findings suggest that color-biased figure-ground perception may arise from the synergistic effect of antagonistic M/P system interactions and other optical and cortical mechanisms, together compensating for chromatic aberrations.</p>\",\"PeriodicalId\":55433,\"journal\":{\"name\":\"Attention Perception & Psychophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Attention Perception & Psychophysics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13414-024-02956-w\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Attention Perception & Psychophysics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13414-024-02956-w","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
The influence of "advancing" and "receding" colors on figure-ground perception under monocular and binocular viewing.
Research on figure-ground perception has consistently found that red images are more likely to be perceived as figure/nearer, yet the mechanisms behind this are not completely clear. The primary theories have pointed to optical chromatic aberrations or cortical mechanisms, such as the antagonistic interactions of the magno-/parvocellular (M/P) systems. Our study explored this color-biased figure-ground perception by examining the duration for which a region was perceived as figure under both binocular and monocular conditions, using all combinations of red, blue, green, and gray. In Experiment 1, we used figure-ground ambiguous Maltese crosses, composed of left- and right-tilting sectors of equal area. In Experiment 2, the crosses were figure-ground biased with size and orientation cues. Here, small sectors of cardinal orientations, likely perceived as figure, were contrasted with larger, obliquely oriented sectors, likely perceived as ground. Under monocular conditions, the results aligned with chromatic aberration predictions: red advanced and blue receded, regardless of size and orientation. However, under binocular conditions, the advancing effect of red continued, but the receding effect of blue was generally not observed. Notably, blue, along with red and green, was more frequently perceived as figure compared to gray. The results under binocular viewing are in line with the expectations of the antagonistic M/P system interactions theory, likely due to the collective input from both eyes, facilitating the anticipated effects. Our findings suggest that color-biased figure-ground perception may arise from the synergistic effect of antagonistic M/P system interactions and other optical and cortical mechanisms, together compensating for chromatic aberrations.
期刊介绍:
The journal Attention, Perception, & Psychophysics is an official journal of the Psychonomic Society. It spans all areas of research in sensory processes, perception, attention, and psychophysics. Most articles published are reports of experimental work; the journal also presents theoretical, integrative, and evaluative reviews. Commentary on issues of importance to researchers appears in a special section of the journal. Founded in 1966 as Perception & Psychophysics, the journal assumed its present name in 2009.