Yanping Wei, Quan Yuan, Dalal Sulaiman Alshaya, Abdul Waheed, Kotb A Attia, Sajid Fiaz, Muhammad Shahid Iqbal
{"title":"鉴定 CPSF30 基因干扰对拟南芥 TuMV 感染的影响。","authors":"Yanping Wei, Quan Yuan, Dalal Sulaiman Alshaya, Abdul Waheed, Kotb A Attia, Sajid Fiaz, Muhammad Shahid Iqbal","doi":"10.1080/21645698.2024.2403776","DOIUrl":null,"url":null,"abstract":"<p><p>CPSF30, a key polyadenylation factor, also serves as an m<sup>6</sup>A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in <i>Arabidopsis thaliana</i>, as evidenced by infection experiments on the engineered <i>cpsf30</i> mutant. Among the two isoforms, CPSF30-L, which were characterized with m<sup>6</sup>A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m<sup>6</sup>A components revealed potential involvement of the m<sup>6</sup>A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and <i>cpsf30</i> mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"1-17"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445912/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterizing the impact of CPSF30 gene disruption on TuMV infection in <i>Arabidopsis thaliana</i>.\",\"authors\":\"Yanping Wei, Quan Yuan, Dalal Sulaiman Alshaya, Abdul Waheed, Kotb A Attia, Sajid Fiaz, Muhammad Shahid Iqbal\",\"doi\":\"10.1080/21645698.2024.2403776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CPSF30, a key polyadenylation factor, also serves as an m<sup>6</sup>A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in <i>Arabidopsis thaliana</i>, as evidenced by infection experiments on the engineered <i>cpsf30</i> mutant. Among the two isoforms, CPSF30-L, which were characterized with m<sup>6</sup>A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m<sup>6</sup>A components revealed potential involvement of the m<sup>6</sup>A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and <i>cpsf30</i> mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"15 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2024.2403776\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2024.2403776","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Characterizing the impact of CPSF30 gene disruption on TuMV infection in Arabidopsis thaliana.
CPSF30, a key polyadenylation factor, also serves as an m6A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in Arabidopsis thaliana, as evidenced by infection experiments on the engineered cpsf30 mutant. Among the two isoforms, CPSF30-L, which were characterized with m6A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m6A components revealed potential involvement of the m6A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and cpsf30 mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.
期刊介绍:
GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers.
GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer.
Topics covered include, but are not limited to:
• Production and analysis of transgenic crops
• Gene insertion studies
• Gene silencing
• Factors affecting gene expression
• Post-translational analysis
• Molecular farming
• Field trial analysis
• Commercialization of modified crops
• Safety and regulatory affairs
BIOLOGICAL SCIENCE AND TECHNOLOGY
• Biofuels
• Data from field trials
• Development of transformation technology
• Elimination of pollutants (Bioremediation)
• Gene silencing mechanisms
• Genome Editing
• Herbicide resistance
• Molecular farming
• Pest resistance
• Plant reproduction (e.g., male sterility, hybrid breeding, apomixis)
• Plants with altered composition
• Tolerance to abiotic stress
• Transgenesis in agriculture
• Biofortification and nutrients improvement
• Genomic, proteomic and bioinformatics methods used for developing GM cops
ECONOMIC, POLITICAL AND SOCIAL ISSUES
• Commercialization
• Consumer attitudes
• International bodies
• National and local government policies
• Public perception, intellectual property, education, (bio)ethical issues
• Regulation, environmental impact and containment
• Socio-economic impact
• Food safety and security
• Risk assessments