Samy Chikhi, Nadine Matton, Marie Sanna, Sophie Blanchet
{"title":"一个疗程的θ或高α神经反馈对脑电图活动和工作记忆的影响。","authors":"Samy Chikhi, Nadine Matton, Marie Sanna, Sophie Blanchet","doi":"10.3758/s13415-024-01218-4","DOIUrl":null,"url":null,"abstract":"<p><p>Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory.\",\"authors\":\"Samy Chikhi, Nadine Matton, Marie Sanna, Sophie Blanchet\",\"doi\":\"10.3758/s13415-024-01218-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).</p>\",\"PeriodicalId\":50672,\"journal\":{\"name\":\"Cognitive Affective & Behavioral Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Affective & Behavioral Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3758/s13415-024-01218-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-024-01218-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory.
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
期刊介绍:
Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.