昆虫的浮力调节

IF 5.3 2区 医学 Q1 PHYSIOLOGY
Philip G D Matthews
{"title":"昆虫的浮力调节","authors":"Philip G D Matthews","doi":"10.1152/physiol.00017.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple insect lineages have successfully reinvaded the aquatic environment, evolving to complete either part or all of their life cycle submerged in water. While these insects vary in their reliance on atmospheric oxygen, with many having the ability to extract dissolved oxygen directly from the water, all retain an internal air-filled respiratory system, their tracheal system, due to their terrestrial origins. However, carrying air within their tracheal system, and even augmenting this volume with additional air bubbles carried on their body, dramatically increases their buoyancy which can make it challenging to remain submerged. But by manipulating this air volume a few aquatic insects can deliberately alter or regulate their position in the water column. Unlike cephalopods and teleost fish that control the volume of gas within their hydrostatic organs by either using osmosis to pull liquid from a rigid chamber or secreting oxygen at high pressure to inflate a flexible chamber, insects have evolved hydrostatic control mechanisms that rely either on the temporary stabilization of a compressible air-bubble volume using O<sub>2</sub> unloaded from hemoglobin, or the mechanical expansion and contraction of a gas-filled volume with rigid, gas-permeable walls. The ability to increase their buoyancy while submerged separates aquatic insects from the buoyancy compensation achieved by other air-breathing aquatic animals which also use air within their respiratory systems to offset their submerged weight. The mechanisms they have evolved to achieve this are unique and provide new insights into the function and evolution of mechanochemical systems.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buoyancy regulation in insects.\",\"authors\":\"Philip G D Matthews\",\"doi\":\"10.1152/physiol.00017.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple insect lineages have successfully reinvaded the aquatic environment, evolving to complete either part or all of their life cycle submerged in water. While these insects vary in their reliance on atmospheric oxygen, with many having the ability to extract dissolved oxygen directly from the water, all retain an internal air-filled respiratory system, their tracheal system, due to their terrestrial origins. However, carrying air within their tracheal system, and even augmenting this volume with additional air bubbles carried on their body, dramatically increases their buoyancy which can make it challenging to remain submerged. But by manipulating this air volume a few aquatic insects can deliberately alter or regulate their position in the water column. Unlike cephalopods and teleost fish that control the volume of gas within their hydrostatic organs by either using osmosis to pull liquid from a rigid chamber or secreting oxygen at high pressure to inflate a flexible chamber, insects have evolved hydrostatic control mechanisms that rely either on the temporary stabilization of a compressible air-bubble volume using O<sub>2</sub> unloaded from hemoglobin, or the mechanical expansion and contraction of a gas-filled volume with rigid, gas-permeable walls. The ability to increase their buoyancy while submerged separates aquatic insects from the buoyancy compensation achieved by other air-breathing aquatic animals which also use air within their respiratory systems to offset their submerged weight. The mechanisms they have evolved to achieve this are unique and provide new insights into the function and evolution of mechanochemical systems.</p>\",\"PeriodicalId\":49694,\"journal\":{\"name\":\"Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physiol.00017.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00017.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多个昆虫品系已经成功地重新进入水生环境,进化到可以在水中完成部分或全部生命周期。虽然这些昆虫对大气中氧气的依赖程度各不相同,许多昆虫能够直接从水中提取溶解氧,但由于它们的陆生起源,所有昆虫都保留了内部充满空气的呼吸系统--气管系统。然而,在气管系统中携带空气,甚至在身体上携带额外的气泡来增加空气量,会大大增加它们的浮力,这可能会使它们在水中保持沉默具有挑战性。但是,通过操纵这种气量,一些水生昆虫可以有意改变或调节它们在水体中的位置。头足类和远摄鱼类通过利用渗透作用从一个坚硬的腔体中抽取液体或分泌高压氧气使一个柔性腔体膨胀来控制其静水器官中的气体体积,而昆虫则不同,它们进化出了静水控制机制,这种机制要么依赖于利用从血红蛋白中释放的氧气暂时稳定可压缩的气泡体积,要么依赖于具有坚硬的透气壁的充满气体的体积的机械膨胀和收缩。水生昆虫在水下增加浮力的能力使它们与其他呼吸空气的水生动物所获得的浮力补偿区分开来,后者也是利用呼吸系统中的空气来抵消水下重量。它们为实现这一目标而进化出的机制是独一无二的,为机械化学系统的功能和进化提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buoyancy regulation in insects.

Multiple insect lineages have successfully reinvaded the aquatic environment, evolving to complete either part or all of their life cycle submerged in water. While these insects vary in their reliance on atmospheric oxygen, with many having the ability to extract dissolved oxygen directly from the water, all retain an internal air-filled respiratory system, their tracheal system, due to their terrestrial origins. However, carrying air within their tracheal system, and even augmenting this volume with additional air bubbles carried on their body, dramatically increases their buoyancy which can make it challenging to remain submerged. But by manipulating this air volume a few aquatic insects can deliberately alter or regulate their position in the water column. Unlike cephalopods and teleost fish that control the volume of gas within their hydrostatic organs by either using osmosis to pull liquid from a rigid chamber or secreting oxygen at high pressure to inflate a flexible chamber, insects have evolved hydrostatic control mechanisms that rely either on the temporary stabilization of a compressible air-bubble volume using O2 unloaded from hemoglobin, or the mechanical expansion and contraction of a gas-filled volume with rigid, gas-permeable walls. The ability to increase their buoyancy while submerged separates aquatic insects from the buoyancy compensation achieved by other air-breathing aquatic animals which also use air within their respiratory systems to offset their submerged weight. The mechanisms they have evolved to achieve this are unique and provide new insights into the function and evolution of mechanochemical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信