{"title":"BpPP2C-BpMADS11-BpERF61 信号传递赋予桦树耐旱性。","authors":"Huimin Zhao, Yaqi Jia, Yani Niu, Yucheng Wang","doi":"10.1111/nph.20164","DOIUrl":null,"url":null,"abstract":"<p><p>Plant MADS-box proteins are vital for abiotic stress tolerance, yet their mechanisms for responding to drought remain poorly understood. Here, we investigated the drought tolerance mechanism of a MADS-box protein (BpMADS11) from birch (Betula platyphylla) using immunoprecipitation, Western blotting, yeast two-hybrid, yeast one-hybrid, ChIP, RNA-seq, and dual-luciferase assays to explore post-translational modifications, protein interactions, and gene regulation. Birch plants overexpressing BpMADS11 exhibited enhanced drought tolerance, while knockout lines displayed reduced tolerance. Under drought conditions, BpMADS11 interacts with protein phosphatase 2C22 (BpPP2C22), which dephosphorylates BpMADS11. Birch plants that overexpress BpMADS11 and lack BpPP2C22 show significantly reduced drought tolerance compared with those that only overexpress BpMADS11. BpMADS11 regulates the expression of BpERF61 by binding to CArG-box in its promoter. The dephosphorylated BpMADS11 exhibits increased DNA binding ability and increased expression of BpERF61. Like BpMADS11, birch plants overexpressing BpERF61 show improved drought tolerance, while those with BpERF61 knockout exhibit decreased tolerance. BpERF61 binds to specific DNA motifs including 'CACGTG' (G-box), 'GGGCCCC', and 'TTGGAT' to regulate the genes related to drought stress. Collectively, BpMADS11 undergoes dephosphorylation through its interaction with BpPP2C22, prompting the expression of BpERF61. Subsequently, BpERF61 regulates downstream genes by binding to specific DNA motifs, thereby enhancing drought tolerance.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":"2364-2381"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The BpPP2C-BpMADS11-BpERF61 signaling confers drought tolerance in Betula platyphylla.\",\"authors\":\"Huimin Zhao, Yaqi Jia, Yani Niu, Yucheng Wang\",\"doi\":\"10.1111/nph.20164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant MADS-box proteins are vital for abiotic stress tolerance, yet their mechanisms for responding to drought remain poorly understood. Here, we investigated the drought tolerance mechanism of a MADS-box protein (BpMADS11) from birch (Betula platyphylla) using immunoprecipitation, Western blotting, yeast two-hybrid, yeast one-hybrid, ChIP, RNA-seq, and dual-luciferase assays to explore post-translational modifications, protein interactions, and gene regulation. Birch plants overexpressing BpMADS11 exhibited enhanced drought tolerance, while knockout lines displayed reduced tolerance. Under drought conditions, BpMADS11 interacts with protein phosphatase 2C22 (BpPP2C22), which dephosphorylates BpMADS11. Birch plants that overexpress BpMADS11 and lack BpPP2C22 show significantly reduced drought tolerance compared with those that only overexpress BpMADS11. BpMADS11 regulates the expression of BpERF61 by binding to CArG-box in its promoter. The dephosphorylated BpMADS11 exhibits increased DNA binding ability and increased expression of BpERF61. Like BpMADS11, birch plants overexpressing BpERF61 show improved drought tolerance, while those with BpERF61 knockout exhibit decreased tolerance. BpERF61 binds to specific DNA motifs including 'CACGTG' (G-box), 'GGGCCCC', and 'TTGGAT' to regulate the genes related to drought stress. Collectively, BpMADS11 undergoes dephosphorylation through its interaction with BpPP2C22, prompting the expression of BpERF61. Subsequently, BpERF61 regulates downstream genes by binding to specific DNA motifs, thereby enhancing drought tolerance.</p>\",\"PeriodicalId\":48887,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\" \",\"pages\":\"2364-2381\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20164\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20164","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The BpPP2C-BpMADS11-BpERF61 signaling confers drought tolerance in Betula platyphylla.
Plant MADS-box proteins are vital for abiotic stress tolerance, yet their mechanisms for responding to drought remain poorly understood. Here, we investigated the drought tolerance mechanism of a MADS-box protein (BpMADS11) from birch (Betula platyphylla) using immunoprecipitation, Western blotting, yeast two-hybrid, yeast one-hybrid, ChIP, RNA-seq, and dual-luciferase assays to explore post-translational modifications, protein interactions, and gene regulation. Birch plants overexpressing BpMADS11 exhibited enhanced drought tolerance, while knockout lines displayed reduced tolerance. Under drought conditions, BpMADS11 interacts with protein phosphatase 2C22 (BpPP2C22), which dephosphorylates BpMADS11. Birch plants that overexpress BpMADS11 and lack BpPP2C22 show significantly reduced drought tolerance compared with those that only overexpress BpMADS11. BpMADS11 regulates the expression of BpERF61 by binding to CArG-box in its promoter. The dephosphorylated BpMADS11 exhibits increased DNA binding ability and increased expression of BpERF61. Like BpMADS11, birch plants overexpressing BpERF61 show improved drought tolerance, while those with BpERF61 knockout exhibit decreased tolerance. BpERF61 binds to specific DNA motifs including 'CACGTG' (G-box), 'GGGCCCC', and 'TTGGAT' to regulate the genes related to drought stress. Collectively, BpMADS11 undergoes dephosphorylation through its interaction with BpPP2C22, prompting the expression of BpERF61. Subsequently, BpERF61 regulates downstream genes by binding to specific DNA motifs, thereby enhancing drought tolerance.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.