{"title":"含纳米粒子的光致伸缩性水凝胶敷料具有出色的光动力、光热和化学动力协同疗法,可有效愈合感染伤口。","authors":"Zhangjie Ge, Hao Wu, Jianing Wu, Yunhan He, Rongshuang Tan, Yixi Wang, Tingying Xiao, Genxi Dong, Ping Zhou, Zhankui Xing","doi":"10.1021/acsabm.4c01063","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial resistance to antibiotics can negatively affect the treatment of infected skin wounds. The combination of synergistic antibacterial therapies with photodynamic, photothermal, and chemodynamic therapies has been recognized as one of the most promising approaches. In this study, we have developed MSN@Ce6@MnO<sub>2</sub>-CS/Ag (MCMA) nanoparticles to serve as powerful antibacterial agents when exposed to both 660 nm visible light and 808 nm near-infrared (NIR) light. Through dual-light irradiation, MCMA can induce hyperthermia and generate reactive oxygen species (ROS), leading to a remarkable enhancement in photothermal antibacterial effects and accelerating wound healing. It has a peroxidase-like catalytic activity and promotes the generation of hydroxyl radicals (·OH) by catalyzing the decomposition of H<sub>2</sub>O<sub>2</sub>. <i>In vitro</i> antibacterial experiments demonstrated the excellent antibacterial activity of MCMA. The antibacterial efficacy of MCMA at a concentration of 250 μg ml<sup>-1</sup> was found to be 99.6 and 100% toward Gram-positive <i>Staphylococcus aureus</i> and Gram-negative <i>Escherichia coli</i>, respectively, under irradiation with an 808 and 660 nm laser. The results of the animal experiments demonstrated that MCMA can effectively accelerate wound healing through wound ulceration inhabitation. These findings substantiate the assertion that synthetic MCMA represents an efficacious strategy for bacterial inhibition and wound healing.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"6970-6984"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoresponsive Hydrogel Dressing Containing Nanoparticles with Excellent Synergetic Photodynamic, Photothermal, and Chemodynamic Therapies for Effective Infected Wound Healing.\",\"authors\":\"Zhangjie Ge, Hao Wu, Jianing Wu, Yunhan He, Rongshuang Tan, Yixi Wang, Tingying Xiao, Genxi Dong, Ping Zhou, Zhankui Xing\",\"doi\":\"10.1021/acsabm.4c01063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial resistance to antibiotics can negatively affect the treatment of infected skin wounds. The combination of synergistic antibacterial therapies with photodynamic, photothermal, and chemodynamic therapies has been recognized as one of the most promising approaches. In this study, we have developed MSN@Ce6@MnO<sub>2</sub>-CS/Ag (MCMA) nanoparticles to serve as powerful antibacterial agents when exposed to both 660 nm visible light and 808 nm near-infrared (NIR) light. Through dual-light irradiation, MCMA can induce hyperthermia and generate reactive oxygen species (ROS), leading to a remarkable enhancement in photothermal antibacterial effects and accelerating wound healing. It has a peroxidase-like catalytic activity and promotes the generation of hydroxyl radicals (·OH) by catalyzing the decomposition of H<sub>2</sub>O<sub>2</sub>. <i>In vitro</i> antibacterial experiments demonstrated the excellent antibacterial activity of MCMA. The antibacterial efficacy of MCMA at a concentration of 250 μg ml<sup>-1</sup> was found to be 99.6 and 100% toward Gram-positive <i>Staphylococcus aureus</i> and Gram-negative <i>Escherichia coli</i>, respectively, under irradiation with an 808 and 660 nm laser. The results of the animal experiments demonstrated that MCMA can effectively accelerate wound healing through wound ulceration inhabitation. These findings substantiate the assertion that synthetic MCMA represents an efficacious strategy for bacterial inhibition and wound healing.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\" \",\"pages\":\"6970-6984\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Photoresponsive Hydrogel Dressing Containing Nanoparticles with Excellent Synergetic Photodynamic, Photothermal, and Chemodynamic Therapies for Effective Infected Wound Healing.
Bacterial resistance to antibiotics can negatively affect the treatment of infected skin wounds. The combination of synergistic antibacterial therapies with photodynamic, photothermal, and chemodynamic therapies has been recognized as one of the most promising approaches. In this study, we have developed MSN@Ce6@MnO2-CS/Ag (MCMA) nanoparticles to serve as powerful antibacterial agents when exposed to both 660 nm visible light and 808 nm near-infrared (NIR) light. Through dual-light irradiation, MCMA can induce hyperthermia and generate reactive oxygen species (ROS), leading to a remarkable enhancement in photothermal antibacterial effects and accelerating wound healing. It has a peroxidase-like catalytic activity and promotes the generation of hydroxyl radicals (·OH) by catalyzing the decomposition of H2O2. In vitro antibacterial experiments demonstrated the excellent antibacterial activity of MCMA. The antibacterial efficacy of MCMA at a concentration of 250 μg ml-1 was found to be 99.6 and 100% toward Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, respectively, under irradiation with an 808 and 660 nm laser. The results of the animal experiments demonstrated that MCMA can effectively accelerate wound healing through wound ulceration inhabitation. These findings substantiate the assertion that synthetic MCMA represents an efficacious strategy for bacterial inhibition and wound healing.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.