六方 Ge 的纳秒载流子寿命

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Victor T. van Lange, Alain Dijkstra, Elham M. T. Fadaly, Wouter H. J. Peeters, Marvin A. J. van Tilburg, Erik P. A. M. Bakkers, Friedhelm Bechstedt, Jonathan J. Finley, Jos E. M. Haverkort
{"title":"六方 Ge 的纳秒载流子寿命","authors":"Victor T. van Lange, Alain Dijkstra, Elham M. T. Fadaly, Wouter H. J. Peeters, Marvin A. J. van Tilburg, Erik P. A. M. Bakkers, Friedhelm Bechstedt, Jonathan J. Finley, Jos E. M. Haverkort","doi":"10.1021/acsphotonics.4c01135","DOIUrl":null,"url":null,"abstract":"Hexagonal Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub>, where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher–Stern–Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanosecond Carrier Lifetime of Hexagonal Ge\",\"authors\":\"Victor T. van Lange, Alain Dijkstra, Elham M. T. Fadaly, Wouter H. J. Peeters, Marvin A. J. van Tilburg, Erik P. A. M. Bakkers, Friedhelm Bechstedt, Jonathan J. Finley, Jos E. M. Haverkort\",\"doi\":\"10.1021/acsphotonics.4c01135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hexagonal Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub>, where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si<sub>1–<i>x</i></sub>Ge<sub><i>x</i></sub> nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher–Stern–Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1021/acsphotonics.4c01135\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01135","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有合适合金成分的六方 Si1-xGex 有望成为新的硅兼容直接带隙半导体家族。然而,理论计算预测,该系列的二元端点--大块六方金刚石晶体--仅具有微弱的偶极活性。这与 hex-Si1-xGex 形成了鲜明对比,在 hex-Si1-xGex 中,平移对称性被合金无序打破,从而允许高效的光发射。令人惊讶的是,我们在六硅锗中观察到了与六硅 1-xGex 纳米线中同样强烈的辐射重组,但有关六硅锗辐射寿命和光学转变矩阵元素的详细实验迄今仍未进行。在此,我们报告了利用 Lasher-Stern-Würfel (LSW) 模型对六锗纳米线光致发光光谱的激发密度系列进行的先进光谱线形分析,该分析覆盖了 3 个数量级。分析是在辐射重组占主导地位的低温条件下进行的。我们分析了光诱导的带填充量,从而直接获得了激发载流子密度,通过等效载流子产生率和重组率,我们得出了 (2.1 ± 0.3) ns 的辐射寿命。此外,我们还利用 LSW 模型独立提取了 10.5 ± 0.9 的高振荡器强度,与砷化镓或氮化镓等 III/V 半导体的振荡器强度相当,这表明六锗纳米结构的光学特性完全适合广泛的光电器件应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanosecond Carrier Lifetime of Hexagonal Ge

Nanosecond Carrier Lifetime of Hexagonal Ge
Hexagonal Si1–xGex with suitable alloy composition promises to become a new silicon compatible direct bandgap family of semiconductors. Theoretical calculations, however, predict that the binary end point of this family, the bulk hex-Ge crystal, is only weakly dipole active. This is in contrast to hex-Si1–xGex, where translation symmetry is broken by alloy disorder, permitting efficient light emission. Surprisingly, we observe equally strong radiative recombination in hex-Ge as in hex-Si1–xGex nanowires, but scrutinizing experiments on the radiative lifetime and the optical transition matrix element of hex-Ge remain hitherto unexplored. Here, we report an advanced spectral line shape analysis exploiting the Lasher–Stern–Würfel (LSW) model on an excitation density series of hex-Ge nanowire photoluminescence spectra covering 3 orders of magnitude. The analysis was performed at low temperature where radiative recombination is dominant. We analyze the amount of photoinduced bandfilling to obtain direct access to the excited carrier density, which allows to extract a radiative lifetime of (2.1 ± 0.3) ns by equating the carrier generation and recombination rates. In addition, we leveraged the LSW model to independently extract a high oscillator strength of 10.5 ± 0.9, comparable to the oscillator strength of III/V semiconductors like GaAs or GaN, showing that the optical properties of hex-Ge nanostructures are perfectly suited for a wide range of optoelectronic device applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信