Dandan Zhu , Shiwen Hu , Xiaoqiang Li , Ping Long , Youtong Yang , Qinglin Li , Dexue Liu
{"title":"不同热处理条件下生物医学 Ti40Zr40Nb5Ta12Sn3 MEA 的微观结构演变、磨损和腐蚀行为","authors":"Dandan Zhu , Shiwen Hu , Xiaoqiang Li , Ping Long , Youtong Yang , Qinglin Li , Dexue Liu","doi":"10.1016/j.ijrmhm.2024.106906","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, the microstructure, wear and corrosion properties of a novel Ti<sub>40</sub>Zr<sub>40</sub>Nb<sub>5</sub>Ta<sub>12</sub>Sn<sub>3</sub> medium-entropy alloy (MEA) processed by warm rolling and subsequent heat treatment were investigated. The findings reveal nanoscale α” phase precipitated in the alloy following annealing at temperatures of 450 °C, 550 °C, and 650 °C. During the friction and wear of the MEA, it was observed that the wet friction coefficient and wear rate of the alloy surpassed those under dry friction conditions. The wear mechanisms of alloys were abrasive wear and oxidation wear during dry friction, and abrasive wear and corrosion wear during wet friction. Furthermore, Sn<sub>3</sub>–450 alloy exhibited exceptional corrosion resistance compared to Ti6Al4V alloy, with a lower corrosion current density (I<sub>corr</sub>: 0.165 μA·cm<sup>−2</sup>) and a higher corrosion potential (E<sub>corr</sub>: −0.638 ± 0.015 V) in phosphate buffered saline (PBS) solution. These results suggest the significant potential application of the Sn<sub>3</sub>–450 alloy in biomedical applications.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"125 ","pages":"Article 106906"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The microstructure evolution, wear and corrosion behavior of biomedical Ti40Zr40Nb5Ta12Sn3 MEA at different heat treatment conditions\",\"authors\":\"Dandan Zhu , Shiwen Hu , Xiaoqiang Li , Ping Long , Youtong Yang , Qinglin Li , Dexue Liu\",\"doi\":\"10.1016/j.ijrmhm.2024.106906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, the microstructure, wear and corrosion properties of a novel Ti<sub>40</sub>Zr<sub>40</sub>Nb<sub>5</sub>Ta<sub>12</sub>Sn<sub>3</sub> medium-entropy alloy (MEA) processed by warm rolling and subsequent heat treatment were investigated. The findings reveal nanoscale α” phase precipitated in the alloy following annealing at temperatures of 450 °C, 550 °C, and 650 °C. During the friction and wear of the MEA, it was observed that the wet friction coefficient and wear rate of the alloy surpassed those under dry friction conditions. The wear mechanisms of alloys were abrasive wear and oxidation wear during dry friction, and abrasive wear and corrosion wear during wet friction. Furthermore, Sn<sub>3</sub>–450 alloy exhibited exceptional corrosion resistance compared to Ti6Al4V alloy, with a lower corrosion current density (I<sub>corr</sub>: 0.165 μA·cm<sup>−2</sup>) and a higher corrosion potential (E<sub>corr</sub>: −0.638 ± 0.015 V) in phosphate buffered saline (PBS) solution. These results suggest the significant potential application of the Sn<sub>3</sub>–450 alloy in biomedical applications.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"125 \",\"pages\":\"Article 106906\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436824003548\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824003548","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The microstructure evolution, wear and corrosion behavior of biomedical Ti40Zr40Nb5Ta12Sn3 MEA at different heat treatment conditions
In the present study, the microstructure, wear and corrosion properties of a novel Ti40Zr40Nb5Ta12Sn3 medium-entropy alloy (MEA) processed by warm rolling and subsequent heat treatment were investigated. The findings reveal nanoscale α” phase precipitated in the alloy following annealing at temperatures of 450 °C, 550 °C, and 650 °C. During the friction and wear of the MEA, it was observed that the wet friction coefficient and wear rate of the alloy surpassed those under dry friction conditions. The wear mechanisms of alloys were abrasive wear and oxidation wear during dry friction, and abrasive wear and corrosion wear during wet friction. Furthermore, Sn3–450 alloy exhibited exceptional corrosion resistance compared to Ti6Al4V alloy, with a lower corrosion current density (Icorr: 0.165 μA·cm−2) and a higher corrosion potential (Ecorr: −0.638 ± 0.015 V) in phosphate buffered saline (PBS) solution. These results suggest the significant potential application of the Sn3–450 alloy in biomedical applications.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.