{"title":"深层水力压裂的能量平衡","authors":"Carlo Peruzzo, Andreas Möri, Brice Lecampion","doi":"10.1016/j.ijengsci.2024.104151","DOIUrl":null,"url":null,"abstract":"<div><div>We detail the energy balance of a propagating hydraulic fracture. Using the linear hydraulic fracture model which combines lubrication flow and linear elastic fracture mechanics, we demonstrate how different propagation regimes are related to the dominance of a given term of the power balance of a growing hydraulic fracture. Taking an energy point of view allows us to offer a physical explanation of hydraulic fracture growth behaviours, such as, for example, the transition from viscosity to toughness dominated growth for a radial geometry, fracture propagation after the end of the injection or transition to self-buoyant elongated growth. We quantify the evolution of the different power terms for a series of numerical examples. We also discuss the order of magnitudes of the different terms for a industrial-like hydraulic fracturing treatment accounting for the additional dissipation in the injection line.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"205 ","pages":"Article 104151"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The energy balance of a hydraulic fracture at depth\",\"authors\":\"Carlo Peruzzo, Andreas Möri, Brice Lecampion\",\"doi\":\"10.1016/j.ijengsci.2024.104151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We detail the energy balance of a propagating hydraulic fracture. Using the linear hydraulic fracture model which combines lubrication flow and linear elastic fracture mechanics, we demonstrate how different propagation regimes are related to the dominance of a given term of the power balance of a growing hydraulic fracture. Taking an energy point of view allows us to offer a physical explanation of hydraulic fracture growth behaviours, such as, for example, the transition from viscosity to toughness dominated growth for a radial geometry, fracture propagation after the end of the injection or transition to self-buoyant elongated growth. We quantify the evolution of the different power terms for a series of numerical examples. We also discuss the order of magnitudes of the different terms for a industrial-like hydraulic fracturing treatment accounting for the additional dissipation in the injection line.</div></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":\"205 \",\"pages\":\"Article 104151\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524001356\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001356","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
The energy balance of a hydraulic fracture at depth
We detail the energy balance of a propagating hydraulic fracture. Using the linear hydraulic fracture model which combines lubrication flow and linear elastic fracture mechanics, we demonstrate how different propagation regimes are related to the dominance of a given term of the power balance of a growing hydraulic fracture. Taking an energy point of view allows us to offer a physical explanation of hydraulic fracture growth behaviours, such as, for example, the transition from viscosity to toughness dominated growth for a radial geometry, fracture propagation after the end of the injection or transition to self-buoyant elongated growth. We quantify the evolution of the different power terms for a series of numerical examples. We also discuss the order of magnitudes of the different terms for a industrial-like hydraulic fracturing treatment accounting for the additional dissipation in the injection line.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.