Jiye Jang, Gerard Coquerel, Tae Seok Seo, Woo-Sik Kim and Bum Jun Park
{"title":"用于手性对称性破缺的微流控反溶剂结晶技术","authors":"Jiye Jang, Gerard Coquerel, Tae Seok Seo, Woo-Sik Kim and Bum Jun Park","doi":"10.1039/D4LC00658E","DOIUrl":null,"url":null,"abstract":"<p >We report on the use of a microfluidic antisolvent crystallization method to investigate the effect of solution volume on the chiral symmetry breaking (CSB) phenomena of enantiomeric sodium chlorate crystals. The utilization of a microfluidic device is capable of periodically producing emulsion droplets of uniform size and facilitates the quantitative analysis and visualization of crystallization phenomena occurring within the individual emulsions immersed in an oil continuous medium (<em>i.e.</em>, dodecane). To promote nucleation and crystallization, a small amount of an antisolvent (<em>i.e.</em>, ethanol) is introduced into the continuous phase. We observe that 100% CSB occurs within a certain critical emulsion volume. Beyond this critical volume, the probability of forming two different enantiomeric crystal particles increases. This solution volume-dependent CSB phenomenon can be attributed to the rapid depletion of surrounding molecules by spontaneous crystal growth after the formation of the initial nucleus within the critical volume, thereby suppressing further primary nucleation.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic antisolvent crystallization for chiral symmetry breaking†\",\"authors\":\"Jiye Jang, Gerard Coquerel, Tae Seok Seo, Woo-Sik Kim and Bum Jun Park\",\"doi\":\"10.1039/D4LC00658E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We report on the use of a microfluidic antisolvent crystallization method to investigate the effect of solution volume on the chiral symmetry breaking (CSB) phenomena of enantiomeric sodium chlorate crystals. The utilization of a microfluidic device is capable of periodically producing emulsion droplets of uniform size and facilitates the quantitative analysis and visualization of crystallization phenomena occurring within the individual emulsions immersed in an oil continuous medium (<em>i.e.</em>, dodecane). To promote nucleation and crystallization, a small amount of an antisolvent (<em>i.e.</em>, ethanol) is introduced into the continuous phase. We observe that 100% CSB occurs within a certain critical emulsion volume. Beyond this critical volume, the probability of forming two different enantiomeric crystal particles increases. This solution volume-dependent CSB phenomenon can be attributed to the rapid depletion of surrounding molecules by spontaneous crystal growth after the formation of the initial nucleus within the critical volume, thereby suppressing further primary nucleation.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00658e\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00658e","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Microfluidic antisolvent crystallization for chiral symmetry breaking†
We report on the use of a microfluidic antisolvent crystallization method to investigate the effect of solution volume on the chiral symmetry breaking (CSB) phenomena of enantiomeric sodium chlorate crystals. The utilization of a microfluidic device is capable of periodically producing emulsion droplets of uniform size and facilitates the quantitative analysis and visualization of crystallization phenomena occurring within the individual emulsions immersed in an oil continuous medium (i.e., dodecane). To promote nucleation and crystallization, a small amount of an antisolvent (i.e., ethanol) is introduced into the continuous phase. We observe that 100% CSB occurs within a certain critical emulsion volume. Beyond this critical volume, the probability of forming two different enantiomeric crystal particles increases. This solution volume-dependent CSB phenomenon can be attributed to the rapid depletion of surrounding molecules by spontaneous crystal growth after the formation of the initial nucleus within the critical volume, thereby suppressing further primary nucleation.
期刊介绍:
Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.