溶液和聚合体中的高效圆偏振近红外磷光体

IF 32.3 1区 物理与天体物理 Q1 OPTICS
Dan Liu, Wen-Jin Wang, Parvej Alam, Zhan Yang, Kaiwen Wu, Lixun Zhu, Yu Xiong, Shuai Chang, Yong Liu, Bo Wu, Qian Wu, Zijie Qiu, Zheng Zhao, Ben Zhong Tang
{"title":"溶液和聚合体中的高效圆偏振近红外磷光体","authors":"Dan Liu, Wen-Jin Wang, Parvej Alam, Zhan Yang, Kaiwen Wu, Lixun Zhu, Yu Xiong, Shuai Chang, Yong Liu, Bo Wu, Qian Wu, Zijie Qiu, Zheng Zhao, Ben Zhong Tang","doi":"10.1038/s41566-024-01538-4","DOIUrl":null,"url":null,"abstract":"Circularly polarized phosphorescence (CPP) is a spin-forbidden radiative process, and its underlying mechanism is not comprehensively understood, mainly due to the limited examples of efficient triplet emission from small chiral organic molecules with well-defined structures. Here we investigate a pair of chiral enantiomers, R- and S-BBTI, that feature highly distorted spiral ring-locked heteroaromatics with heavy iodine atoms. These chiral molecules are found to exhibit large dissymmetry factors up to 0.013 and emit near-infrared CPP with an efficiency of 4.2% and a lifetime of 119 μs in dimethyl sulfoxide solution excited by ultraviolet irradiation. Their crystals show efficient CPP with 7.0% quantum efficiency and a lifetime of 166 μs. Extensive experimental chiroptical investigations combined with theoretical calculations reveal an efficient spin-flip process that modulates the electron and magnetic transition dipole moments to enhance CPP performance. Moreover, the phosphorescence of R/S-BBTI is oxygen-sensitive and photoactivatable in dimethyl sulfoxide. Therefore, R/S-BBTI can be applied for hypoxia imaging in cells and tumours, expanding the application scope of CPP materials. Two chiral enantiomers, R- and S-BBTI, are found to efficiently emit near-infrared circularly polarized phosphorescence with a large dissymmetry factor of 0.013 in dilute solutions.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 12","pages":"1276-1284"},"PeriodicalIF":32.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate\",\"authors\":\"Dan Liu, Wen-Jin Wang, Parvej Alam, Zhan Yang, Kaiwen Wu, Lixun Zhu, Yu Xiong, Shuai Chang, Yong Liu, Bo Wu, Qian Wu, Zijie Qiu, Zheng Zhao, Ben Zhong Tang\",\"doi\":\"10.1038/s41566-024-01538-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Circularly polarized phosphorescence (CPP) is a spin-forbidden radiative process, and its underlying mechanism is not comprehensively understood, mainly due to the limited examples of efficient triplet emission from small chiral organic molecules with well-defined structures. Here we investigate a pair of chiral enantiomers, R- and S-BBTI, that feature highly distorted spiral ring-locked heteroaromatics with heavy iodine atoms. These chiral molecules are found to exhibit large dissymmetry factors up to 0.013 and emit near-infrared CPP with an efficiency of 4.2% and a lifetime of 119 μs in dimethyl sulfoxide solution excited by ultraviolet irradiation. Their crystals show efficient CPP with 7.0% quantum efficiency and a lifetime of 166 μs. Extensive experimental chiroptical investigations combined with theoretical calculations reveal an efficient spin-flip process that modulates the electron and magnetic transition dipole moments to enhance CPP performance. Moreover, the phosphorescence of R/S-BBTI is oxygen-sensitive and photoactivatable in dimethyl sulfoxide. Therefore, R/S-BBTI can be applied for hypoxia imaging in cells and tumours, expanding the application scope of CPP materials. Two chiral enantiomers, R- and S-BBTI, are found to efficiently emit near-infrared circularly polarized phosphorescence with a large dissymmetry factor of 0.013 in dilute solutions.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 12\",\"pages\":\"1276-1284\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01538-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01538-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

圆偏振磷光(CPP)是一种自旋禁止辐射过程,其基本机制尚未得到全面了解,主要原因是具有明确结构的小型手性有机分子高效三重发射的实例有限。在这里,我们研究了一对手性对映体--R-和 S-BBTI,它们具有高度扭曲的螺旋锁环杂芳香族与重碘原子。研究发现,这些手性分子表现出高达 0.013 的大不对称因子,在紫外线照射激发的二甲基亚砜溶液中发射近红外 CPP 的效率为 4.2%,寿命为 119 μs。他们的晶体显示出高效的 CPP,量子效率为 7.0%,寿命为 166 μs。广泛的气旋光学实验研究与理论计算相结合,揭示了一种高效的自旋翻转过程,该过程可调节电子和磁过渡偶极矩,从而提高 CPP 性能。此外,R/S-BBTI 的磷光在二甲基亚砜中对氧敏感并可被光激活。因此,R/S-BBTI 可用于细胞和肿瘤的缺氧成像,扩大了 CPP 材料的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate

Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate

Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate
Circularly polarized phosphorescence (CPP) is a spin-forbidden radiative process, and its underlying mechanism is not comprehensively understood, mainly due to the limited examples of efficient triplet emission from small chiral organic molecules with well-defined structures. Here we investigate a pair of chiral enantiomers, R- and S-BBTI, that feature highly distorted spiral ring-locked heteroaromatics with heavy iodine atoms. These chiral molecules are found to exhibit large dissymmetry factors up to 0.013 and emit near-infrared CPP with an efficiency of 4.2% and a lifetime of 119 μs in dimethyl sulfoxide solution excited by ultraviolet irradiation. Their crystals show efficient CPP with 7.0% quantum efficiency and a lifetime of 166 μs. Extensive experimental chiroptical investigations combined with theoretical calculations reveal an efficient spin-flip process that modulates the electron and magnetic transition dipole moments to enhance CPP performance. Moreover, the phosphorescence of R/S-BBTI is oxygen-sensitive and photoactivatable in dimethyl sulfoxide. Therefore, R/S-BBTI can be applied for hypoxia imaging in cells and tumours, expanding the application scope of CPP materials. Two chiral enantiomers, R- and S-BBTI, are found to efficiently emit near-infrared circularly polarized phosphorescence with a large dissymmetry factor of 0.013 in dilute solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信