{"title":"机械化学法硫代乙酸盐改性微尺度零价铁以提高重金属去除率","authors":"Junning Zu, Nuanqin Zhang, Xupeng Liu, Yuqing Hu, Linghao Yu, Ziyue Chen, Hao Zhang, Hao Li, Lizhi Zhang","doi":"10.1002/anie.202415051","DOIUrl":null,"url":null,"abstract":"Microscale zero-valent iron (mZVI) is widely used for water pollutant control and environmental remediation, yet its reactivity is still constrained by the inert oxide shell. Herein, we demonstrate that mechanochemical thioglycolate (TG) modification can dramatically enhance heavy metal (NiII, CrVI, CdII, PbII, HgII, and SbIII) removal rates of mZVI by times of 16.7 to 88.0. Compared with conventional impregnation (wet chemical process), this dry mechanochemical process could construct more robust covalent bonding between TG and the inert oxide shell of mZVI through its electron-withdrawing carboxylate group to accelerate the electron release from the iron core, and more effectively strengthen the surface heavy metal adsorption through metal(d)-sulfur(p) orbital hybridization between its thiol group and heavy metal ions. Impressively, this mechanochemically TG-modified mZVI exhibited an unprecedented NiII removal capacity of 580.4 mg Ni g−1 Fe, 17.1 and 9.5 times those of mZVI and wet chemically TG-modified mZVI, respectively. Its application potential was further validated by more than 10 days of stable groundwater NiII removal in a column flow reactor. This study offers a promising strategy to enhance the reactivity of mZVI, and also emphasizes the importance of the modification strategy in optimizing its performance for environmental applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanochemical Thioglycolate Modification of Microscale Zero-Valent Iron for Superior Heavy Metal Removal\",\"authors\":\"Junning Zu, Nuanqin Zhang, Xupeng Liu, Yuqing Hu, Linghao Yu, Ziyue Chen, Hao Zhang, Hao Li, Lizhi Zhang\",\"doi\":\"10.1002/anie.202415051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microscale zero-valent iron (mZVI) is widely used for water pollutant control and environmental remediation, yet its reactivity is still constrained by the inert oxide shell. Herein, we demonstrate that mechanochemical thioglycolate (TG) modification can dramatically enhance heavy metal (NiII, CrVI, CdII, PbII, HgII, and SbIII) removal rates of mZVI by times of 16.7 to 88.0. Compared with conventional impregnation (wet chemical process), this dry mechanochemical process could construct more robust covalent bonding between TG and the inert oxide shell of mZVI through its electron-withdrawing carboxylate group to accelerate the electron release from the iron core, and more effectively strengthen the surface heavy metal adsorption through metal(d)-sulfur(p) orbital hybridization between its thiol group and heavy metal ions. Impressively, this mechanochemically TG-modified mZVI exhibited an unprecedented NiII removal capacity of 580.4 mg Ni g−1 Fe, 17.1 and 9.5 times those of mZVI and wet chemically TG-modified mZVI, respectively. Its application potential was further validated by more than 10 days of stable groundwater NiII removal in a column flow reactor. This study offers a promising strategy to enhance the reactivity of mZVI, and also emphasizes the importance of the modification strategy in optimizing its performance for environmental applications.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202415051\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415051","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mechanochemical Thioglycolate Modification of Microscale Zero-Valent Iron for Superior Heavy Metal Removal
Microscale zero-valent iron (mZVI) is widely used for water pollutant control and environmental remediation, yet its reactivity is still constrained by the inert oxide shell. Herein, we demonstrate that mechanochemical thioglycolate (TG) modification can dramatically enhance heavy metal (NiII, CrVI, CdII, PbII, HgII, and SbIII) removal rates of mZVI by times of 16.7 to 88.0. Compared with conventional impregnation (wet chemical process), this dry mechanochemical process could construct more robust covalent bonding between TG and the inert oxide shell of mZVI through its electron-withdrawing carboxylate group to accelerate the electron release from the iron core, and more effectively strengthen the surface heavy metal adsorption through metal(d)-sulfur(p) orbital hybridization between its thiol group and heavy metal ions. Impressively, this mechanochemically TG-modified mZVI exhibited an unprecedented NiII removal capacity of 580.4 mg Ni g−1 Fe, 17.1 and 9.5 times those of mZVI and wet chemically TG-modified mZVI, respectively. Its application potential was further validated by more than 10 days of stable groundwater NiII removal in a column flow reactor. This study offers a promising strategy to enhance the reactivity of mZVI, and also emphasizes the importance of the modification strategy in optimizing its performance for environmental applications.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.