粉末催化剂上支持的单原子金属位点的直接定量评估

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Paula Aniceto-Ocaña, José Marqueses-Rodriguez, José A. Perez-Omil, José J. Calvino, Carmen E. Castillo, Miguel Lopez-Haro
{"title":"粉末催化剂上支持的单原子金属位点的直接定量评估","authors":"Paula Aniceto-Ocaña, José Marqueses-Rodriguez, José A. Perez-Omil, José J. Calvino, Carmen E. Castillo, Miguel Lopez-Haro","doi":"10.1038/s43246-024-00652-8","DOIUrl":null,"url":null,"abstract":"Rational design of effective catalyst demands a profound understanding of active-site structures. Single-atom supported powder catalysts, depicting unique features like enhanced metal dispersion, hold promise in different applications. Here, we present an approach to directly quantify the detailed structural nature of metal sites in single-atom, high surface area, powder catalysts. By combining advanced high-resolution scanning-transmission electron microscopy, deep learning and density functional theory calculations, we determine, with statistical significance, the exact location and coordination environment of Pd single-atoms supported on MgO nanoplates. Our findings reveal a preferential interaction of Pd single-atoms with cationic vacancies (V-centers), followed by occupation of anionic defects on the {001} MgO surface. The former interaction results in stabilization of PdO species within V-centers, while partially embedded Pd states are found in F-defects. This methodology opens a route to the ultimate structural analysis of metal-support interaction effects, key in the design of advanced nanocatalysts for sustainable and energy-efficient processes. Metal active sites are important in catalysts to function in various applications. Here, the detailed structural nature of single-atom metal sites is directly quantified using a combination of high-resolution microscopy, deep learning, and theoretical calculation methods.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-11"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00652-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Direct quantitative assessment of single-atom metal sites supported on powder catalysts\",\"authors\":\"Paula Aniceto-Ocaña, José Marqueses-Rodriguez, José A. Perez-Omil, José J. Calvino, Carmen E. Castillo, Miguel Lopez-Haro\",\"doi\":\"10.1038/s43246-024-00652-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rational design of effective catalyst demands a profound understanding of active-site structures. Single-atom supported powder catalysts, depicting unique features like enhanced metal dispersion, hold promise in different applications. Here, we present an approach to directly quantify the detailed structural nature of metal sites in single-atom, high surface area, powder catalysts. By combining advanced high-resolution scanning-transmission electron microscopy, deep learning and density functional theory calculations, we determine, with statistical significance, the exact location and coordination environment of Pd single-atoms supported on MgO nanoplates. Our findings reveal a preferential interaction of Pd single-atoms with cationic vacancies (V-centers), followed by occupation of anionic defects on the {001} MgO surface. The former interaction results in stabilization of PdO species within V-centers, while partially embedded Pd states are found in F-defects. This methodology opens a route to the ultimate structural analysis of metal-support interaction effects, key in the design of advanced nanocatalysts for sustainable and energy-efficient processes. Metal active sites are important in catalysts to function in various applications. Here, the detailed structural nature of single-atom metal sites is directly quantified using a combination of high-resolution microscopy, deep learning, and theoretical calculation methods.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00652-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00652-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00652-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要合理设计有效的催化剂,就必须深入了解活性位结构。单原子支撑粉末催化剂具有增强金属分散等独特特征,在不同应用领域大有可为。在此,我们提出了一种直接量化单原子高比表面积粉末催化剂中金属位点详细结构性质的方法。通过结合先进的高分辨率扫描透射电子显微镜、深度学习和密度泛函理论计算,我们确定了钯单原子在氧化镁纳米板上的确切位置和配位环境,并具有统计学意义。我们的研究结果表明,钯单原子优先与阳离子空位(V-中心)相互作用,然后占据{001}氧化镁表面的阴离子缺陷。前一种相互作用导致 PdO 物种稳定在 V-中心内,而部分嵌入的 Pd 状态则出现在 F-缺陷中。这种方法为金属-支撑相互作用效应的最终结构分析开辟了一条途径,是设计先进纳米催化剂以实现可持续和高能效工艺的关键。金属活性位点在催化剂的各种应用中发挥着重要作用。在这里,我们结合使用高分辨率显微镜、深度学习和理论计算方法,直接量化了单原子金属位点的详细结构性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Direct quantitative assessment of single-atom metal sites supported on powder catalysts

Direct quantitative assessment of single-atom metal sites supported on powder catalysts
Rational design of effective catalyst demands a profound understanding of active-site structures. Single-atom supported powder catalysts, depicting unique features like enhanced metal dispersion, hold promise in different applications. Here, we present an approach to directly quantify the detailed structural nature of metal sites in single-atom, high surface area, powder catalysts. By combining advanced high-resolution scanning-transmission electron microscopy, deep learning and density functional theory calculations, we determine, with statistical significance, the exact location and coordination environment of Pd single-atoms supported on MgO nanoplates. Our findings reveal a preferential interaction of Pd single-atoms with cationic vacancies (V-centers), followed by occupation of anionic defects on the {001} MgO surface. The former interaction results in stabilization of PdO species within V-centers, while partially embedded Pd states are found in F-defects. This methodology opens a route to the ultimate structural analysis of metal-support interaction effects, key in the design of advanced nanocatalysts for sustainable and energy-efficient processes. Metal active sites are important in catalysts to function in various applications. Here, the detailed structural nature of single-atom metal sites is directly quantified using a combination of high-resolution microscopy, deep learning, and theoretical calculation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信