利用扫描隧道显微镜认证表面自旋系统纠缠的协议

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Rik Broekhoven, Curie Lee, Soo-hyon Phark, Sander Otte, Christoph Wolf
{"title":"利用扫描隧道显微镜认证表面自旋系统纠缠的协议","authors":"Rik Broekhoven, Curie Lee, Soo-hyon Phark, Sander Otte, Christoph Wolf","doi":"10.1038/s41534-024-00888-9","DOIUrl":null,"url":null,"abstract":"<p>Certifying quantum entanglement is a critical step toward realizing quantum-coherent applications. In this work, we show that entanglement of spins can be unambiguously evidenced in a scanning tunneling microscope with electron spin resonance by exploiting the fact that entangled states undergo a free time evolution with a distinct characteristic time constant that clearly distinguishes it from the time evolution of non-entangled states. By implementing a phase control scheme, the phase of this time evolution can be mapped back onto the population of one entangled spin, which can then be read out reliably using a weakly coupled sensor spin in the junction of the scanning tunneling microscope. We demonstrate through open quantum system simulations with currently available spin coherence times of <i>T</i><sub>2</sub> ≈ 300 ns, that a signal directly correlated with the degree of entanglement can be measured at temperatures of 100–400 mK accessible in sub-Kelvin scanning tunneling microscopes.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protocol for certifying entanglement in surface spin systems using a scanning tunneling microscope\",\"authors\":\"Rik Broekhoven, Curie Lee, Soo-hyon Phark, Sander Otte, Christoph Wolf\",\"doi\":\"10.1038/s41534-024-00888-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Certifying quantum entanglement is a critical step toward realizing quantum-coherent applications. In this work, we show that entanglement of spins can be unambiguously evidenced in a scanning tunneling microscope with electron spin resonance by exploiting the fact that entangled states undergo a free time evolution with a distinct characteristic time constant that clearly distinguishes it from the time evolution of non-entangled states. By implementing a phase control scheme, the phase of this time evolution can be mapped back onto the population of one entangled spin, which can then be read out reliably using a weakly coupled sensor spin in the junction of the scanning tunneling microscope. We demonstrate through open quantum system simulations with currently available spin coherence times of <i>T</i><sub>2</sub> ≈ 300 ns, that a signal directly correlated with the degree of entanglement can be measured at temperatures of 100–400 mK accessible in sub-Kelvin scanning tunneling microscopes.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00888-9\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00888-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

认证量子纠缠是实现量子相干应用的关键一步。在这项工作中,我们展示了利用电子自旋共振的扫描隧道显微镜可以明确地证明自旋的纠缠,其方法是利用纠缠态经历自由时间演化的事实,该演化具有明显的特征时间常数,与非纠缠态的时间演化截然不同。通过实施相位控制方案,可以将这种时间演化的相位映射到一个纠缠自旋的群体上,然后就可以利用扫描隧道显微镜结点中的弱耦合传感器自旋可靠地读出这个群体。我们通过开放式量子系统模拟,利用目前可用的自旋相干时间 T2 ≈ 300 毫微秒来证明,在亚开尔文扫描隧道显微镜可达到的 100-400 毫开氏度温度下,可以测量与纠缠程度直接相关的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protocol for certifying entanglement in surface spin systems using a scanning tunneling microscope

Protocol for certifying entanglement in surface spin systems using a scanning tunneling microscope

Certifying quantum entanglement is a critical step toward realizing quantum-coherent applications. In this work, we show that entanglement of spins can be unambiguously evidenced in a scanning tunneling microscope with electron spin resonance by exploiting the fact that entangled states undergo a free time evolution with a distinct characteristic time constant that clearly distinguishes it from the time evolution of non-entangled states. By implementing a phase control scheme, the phase of this time evolution can be mapped back onto the population of one entangled spin, which can then be read out reliably using a weakly coupled sensor spin in the junction of the scanning tunneling microscope. We demonstrate through open quantum system simulations with currently available spin coherence times of T2 ≈ 300 ns, that a signal directly correlated with the degree of entanglement can be measured at temperatures of 100–400 mK accessible in sub-Kelvin scanning tunneling microscopes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信