Zhujun Huang, Ryong-Gyu Lee, Edoardo Cuniberto, Jiyoon Song, Jeongwon Lee, Abdullah Alharbi, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Yong-Hoon Kim, Davood Shahrjerdi
{"title":"利用范德华二维晶体管中的随机电报信号表征六方氮化硼内部缺陷","authors":"Zhujun Huang, Ryong-Gyu Lee, Edoardo Cuniberto, Jiyoon Song, Jeongwon Lee, Abdullah Alharbi, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Yong-Hoon Kim, Davood Shahrjerdi","doi":"10.1021/acsnano.4c06929","DOIUrl":null,"url":null,"abstract":"Single-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantum devices, where defects significantly impact performance. Therefore, characterizing and engineering hBN defects are crucial for advancing these technologies. Here, we examine the capture and emission dynamics of defects in hBN by utilizing low-frequency noise (LFN) spectroscopy in hBN-encapsulated and graphene-contacted MoS<sub>2</sub> field-effect transistors (FETs). The low disorder of this heterostructure allows the detection of random telegraph signals (RTS) in large device dimensions of 100 μm<sup>2</sup> at cryogenic temperatures. Analysis of gate bias- and temperature-dependent LFN data indicates that RTS originates from a single trap species within hBN. By performing multispace density functional theory (MS-DFT) calculations on a gated defective hBN/MoS<sub>2</sub> heterostructure model, we assign substitutional carbon atoms in boron sites as the atomistic origin of RTS. This study demonstrates the utility of LFN spectroscopy combined with MS-DFT analysis on a low-disorder all-vdW FET as a powerful means for characterizing the atomistic defects in single-crystal hBN.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Defects Inside Hexagonal Boron Nitride Using Random Telegraph Signals in van der Waals 2D Transistors\",\"authors\":\"Zhujun Huang, Ryong-Gyu Lee, Edoardo Cuniberto, Jiyoon Song, Jeongwon Lee, Abdullah Alharbi, Kim Kisslinger, Takashi Taniguchi, Kenji Watanabe, Yong-Hoon Kim, Davood Shahrjerdi\",\"doi\":\"10.1021/acsnano.4c06929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantum devices, where defects significantly impact performance. Therefore, characterizing and engineering hBN defects are crucial for advancing these technologies. Here, we examine the capture and emission dynamics of defects in hBN by utilizing low-frequency noise (LFN) spectroscopy in hBN-encapsulated and graphene-contacted MoS<sub>2</sub> field-effect transistors (FETs). The low disorder of this heterostructure allows the detection of random telegraph signals (RTS) in large device dimensions of 100 μm<sup>2</sup> at cryogenic temperatures. Analysis of gate bias- and temperature-dependent LFN data indicates that RTS originates from a single trap species within hBN. By performing multispace density functional theory (MS-DFT) calculations on a gated defective hBN/MoS<sub>2</sub> heterostructure model, we assign substitutional carbon atoms in boron sites as the atomistic origin of RTS. This study demonstrates the utility of LFN spectroscopy combined with MS-DFT analysis on a low-disorder all-vdW FET as a powerful means for characterizing the atomistic defects in single-crystal hBN.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c06929\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c06929","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterizing Defects Inside Hexagonal Boron Nitride Using Random Telegraph Signals in van der Waals 2D Transistors
Single-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantum devices, where defects significantly impact performance. Therefore, characterizing and engineering hBN defects are crucial for advancing these technologies. Here, we examine the capture and emission dynamics of defects in hBN by utilizing low-frequency noise (LFN) spectroscopy in hBN-encapsulated and graphene-contacted MoS2 field-effect transistors (FETs). The low disorder of this heterostructure allows the detection of random telegraph signals (RTS) in large device dimensions of 100 μm2 at cryogenic temperatures. Analysis of gate bias- and temperature-dependent LFN data indicates that RTS originates from a single trap species within hBN. By performing multispace density functional theory (MS-DFT) calculations on a gated defective hBN/MoS2 heterostructure model, we assign substitutional carbon atoms in boron sites as the atomistic origin of RTS. This study demonstrates the utility of LFN spectroscopy combined with MS-DFT analysis on a low-disorder all-vdW FET as a powerful means for characterizing the atomistic defects in single-crystal hBN.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.