Yang Yang, Yin-suen Tse, Qi Zhang, Kin-yau Wong, Chenxi Yang, Ying Yang, Shuqi Li, Kin-wa Lau, Trevor C. Charles, Thomas C. Lam, Qian Zhao
{"title":"利用集成化学基因组学和化学蛋白质组学进行多重靶标分析","authors":"Yang Yang, Yin-suen Tse, Qi Zhang, Kin-yau Wong, Chenxi Yang, Ying Yang, Shuqi Li, Kin-wa Lau, Trevor C. Charles, Thomas C. Lam, Qian Zhao","doi":"10.1021/acs.jmedchem.4c01463","DOIUrl":null,"url":null,"abstract":"Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds’ perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplexed Target Profiling with Integrated Chemical Genomics and Chemical Proteomics\",\"authors\":\"Yang Yang, Yin-suen Tse, Qi Zhang, Kin-yau Wong, Chenxi Yang, Ying Yang, Shuqi Li, Kin-wa Lau, Trevor C. Charles, Thomas C. Lam, Qian Zhao\",\"doi\":\"10.1021/acs.jmedchem.4c01463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds’ perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01463\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01463","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Multiplexed Target Profiling with Integrated Chemical Genomics and Chemical Proteomics
Target identification is crucial for elucidating the mechanisms of bioactive molecules in drug discovery. However, traditional methods assess compounds individually, making it challenging to efficiently examine multiple compounds in parallel, especially for structurally diverse compounds. This study reports a novel strategy called chemical genomics-facilitated chemical proteomics (CGCP) for multiplexing the target identification of bioactive small molecules. CGCP correlates compounds’ perturbation of global transcription, or chemical genomic profiles, with their reactivity toward target proteins, enabling simultaneous identification of targets. We demonstrated the utility of CGCP by studying the targets of celastrol (Cel) and four other electrophilic compounds with varying levels of similarity to Cel based on their chemical genomic profiles. We identified multiple novel targets and binding sites shared by the compounds in a single experiment. CGCP enabled multiplexity and improved the efficiency of target identification for structurally distinct compounds, indicating its potential to accelerate drug discovery.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.