Youtian Mo, Chaoying Guo, Jiansen Guo, Peixin Liu, Xuan Wang, Yufan Cai, Jiaying Chen, Xi Deng, Wenliang Wang and Guoqiang Li
{"title":"碳纳米管作为高效全面积砷化镓混合异质结太阳能电池的空穴选择性触点","authors":"Youtian Mo, Chaoying Guo, Jiansen Guo, Peixin Liu, Xuan Wang, Yufan Cai, Jiaying Chen, Xi Deng, Wenliang Wang and Guoqiang Li","doi":"10.1039/D4TA05391E","DOIUrl":null,"url":null,"abstract":"<p >Organic hybrid heterojunction solar cells (HJSCs) based on PEDOT:PSS have attracted significant attention due to their excellent photovoltaic performance. However, the complex carrier transport layer, intricate cell fabrication processes and their high-cost are not proportional to the optimization of cell performance. In this work, we demonstrated a facile annealing process lasting only a few seconds to prepare a high-performance Nafion/PEDOT:PSS (NP) hole transport layer (HTL) and its GaAs hybrid heterojunction. By introducing Nafion, the GaAs/NP HJSC achieves a competitive power conversion efficiency (PCE) of 15.77% thanks to the improved wettability, conductivity and carrier mobility of the HTL. Additionally, a thin and transparent carbon nanotube (CNT) film was introduced as the top electrode for the full-area GaAs/NP hybrid HJSC. The novel design of the NP HTL and full-area light absorption open a new avenue for the widespread application of heterojunction photovoltaic technologies.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 43","pages":" 29562-29570"},"PeriodicalIF":10.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanotubes as hole-selective contacts for high-efficiency full-area GaAs hybrid heterojunction solar cells†\",\"authors\":\"Youtian Mo, Chaoying Guo, Jiansen Guo, Peixin Liu, Xuan Wang, Yufan Cai, Jiaying Chen, Xi Deng, Wenliang Wang and Guoqiang Li\",\"doi\":\"10.1039/D4TA05391E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Organic hybrid heterojunction solar cells (HJSCs) based on PEDOT:PSS have attracted significant attention due to their excellent photovoltaic performance. However, the complex carrier transport layer, intricate cell fabrication processes and their high-cost are not proportional to the optimization of cell performance. In this work, we demonstrated a facile annealing process lasting only a few seconds to prepare a high-performance Nafion/PEDOT:PSS (NP) hole transport layer (HTL) and its GaAs hybrid heterojunction. By introducing Nafion, the GaAs/NP HJSC achieves a competitive power conversion efficiency (PCE) of 15.77% thanks to the improved wettability, conductivity and carrier mobility of the HTL. Additionally, a thin and transparent carbon nanotube (CNT) film was introduced as the top electrode for the full-area GaAs/NP hybrid HJSC. The novel design of the NP HTL and full-area light absorption open a new avenue for the widespread application of heterojunction photovoltaic technologies.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 43\",\"pages\":\" 29562-29570\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05391e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05391e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Carbon nanotubes as hole-selective contacts for high-efficiency full-area GaAs hybrid heterojunction solar cells†
Organic hybrid heterojunction solar cells (HJSCs) based on PEDOT:PSS have attracted significant attention due to their excellent photovoltaic performance. However, the complex carrier transport layer, intricate cell fabrication processes and their high-cost are not proportional to the optimization of cell performance. In this work, we demonstrated a facile annealing process lasting only a few seconds to prepare a high-performance Nafion/PEDOT:PSS (NP) hole transport layer (HTL) and its GaAs hybrid heterojunction. By introducing Nafion, the GaAs/NP HJSC achieves a competitive power conversion efficiency (PCE) of 15.77% thanks to the improved wettability, conductivity and carrier mobility of the HTL. Additionally, a thin and transparent carbon nanotube (CNT) film was introduced as the top electrode for the full-area GaAs/NP hybrid HJSC. The novel design of the NP HTL and full-area light absorption open a new avenue for the widespread application of heterojunction photovoltaic technologies.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.