{"title":"用于电磁感知的具有可编程热压机械光热响应的微纤维致动器","authors":"Mengjie Wu, Xinran Zhou, Jiwei Zhang, Luyun Liu, Shuang Wang, Liming Zhu, Zechang Ming, Yufan Zhang, Yong Xia, Weikang Li, Zijie Zhou, Minghui Fan, Jiaqing Xiong","doi":"10.1002/adma.202409606","DOIUrl":null,"url":null,"abstract":"<p>Electromagnetic radiation (EMR) is a ubiquitous harm and hard to detect dynamically in multiple scenarios. A mechano-photothermal cooperative microfiber film (MFF) actuator is developed that can synchronously detect EMR with high reliability. The programmable actuation is deployed by a hot-pressing methodology, achieving the MFF with moderate modulus (378 MPa) and superior toughness (87.26 MJ m<sup>−3</sup>) that ensure superior response (0.068 cm<sup>−1</sup> s<sup>−1</sup>) and bending curvature (0.63 cm<sup>−1</sup>). A secondary hot-pressing can further program the actuation behavior with black phosphorus local photothermal enhancement patterns to achieve 2D–3D transformable geometries. An amphibious robot with a land–water adaptive locomotion mechanism is designed by programming the MFFs. It can crawl on land and locomote on water with a velocity up to ≈1.8 mm s<sup>−1</sup>, and ≈2.39 cm s<sup>−1</sup>, respectively. Employing the conductive fabric layer of the actuator with electromagnetic induction effect, the amphibious robot can synchronously perceive environmental EMR with sensitivity up to 99.73% ± 0.15% during locomotion, with superior adaptability to EMR source intensity (0.1 to 3000 W) and distance (≈9 m) compared to a commercial EMR detector. This EMR detective microfiber actuator can inspire a new direction of environment-interactive smart materials, and soft robots with multi-scenario adaptivity and autonomous environment perceptivity.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfiber Actuators With Hot-Pressing-Programmable Mechano-Photothermal Responses for Electromagnetic Perception\",\"authors\":\"Mengjie Wu, Xinran Zhou, Jiwei Zhang, Luyun Liu, Shuang Wang, Liming Zhu, Zechang Ming, Yufan Zhang, Yong Xia, Weikang Li, Zijie Zhou, Minghui Fan, Jiaqing Xiong\",\"doi\":\"10.1002/adma.202409606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electromagnetic radiation (EMR) is a ubiquitous harm and hard to detect dynamically in multiple scenarios. A mechano-photothermal cooperative microfiber film (MFF) actuator is developed that can synchronously detect EMR with high reliability. The programmable actuation is deployed by a hot-pressing methodology, achieving the MFF with moderate modulus (378 MPa) and superior toughness (87.26 MJ m<sup>−3</sup>) that ensure superior response (0.068 cm<sup>−1</sup> s<sup>−1</sup>) and bending curvature (0.63 cm<sup>−1</sup>). A secondary hot-pressing can further program the actuation behavior with black phosphorus local photothermal enhancement patterns to achieve 2D–3D transformable geometries. An amphibious robot with a land–water adaptive locomotion mechanism is designed by programming the MFFs. It can crawl on land and locomote on water with a velocity up to ≈1.8 mm s<sup>−1</sup>, and ≈2.39 cm s<sup>−1</sup>, respectively. Employing the conductive fabric layer of the actuator with electromagnetic induction effect, the amphibious robot can synchronously perceive environmental EMR with sensitivity up to 99.73% ± 0.15% during locomotion, with superior adaptability to EMR source intensity (0.1 to 3000 W) and distance (≈9 m) compared to a commercial EMR detector. This EMR detective microfiber actuator can inspire a new direction of environment-interactive smart materials, and soft robots with multi-scenario adaptivity and autonomous environment perceptivity.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202409606\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202409606","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Microfiber Actuators With Hot-Pressing-Programmable Mechano-Photothermal Responses for Electromagnetic Perception
Electromagnetic radiation (EMR) is a ubiquitous harm and hard to detect dynamically in multiple scenarios. A mechano-photothermal cooperative microfiber film (MFF) actuator is developed that can synchronously detect EMR with high reliability. The programmable actuation is deployed by a hot-pressing methodology, achieving the MFF with moderate modulus (378 MPa) and superior toughness (87.26 MJ m−3) that ensure superior response (0.068 cm−1 s−1) and bending curvature (0.63 cm−1). A secondary hot-pressing can further program the actuation behavior with black phosphorus local photothermal enhancement patterns to achieve 2D–3D transformable geometries. An amphibious robot with a land–water adaptive locomotion mechanism is designed by programming the MFFs. It can crawl on land and locomote on water with a velocity up to ≈1.8 mm s−1, and ≈2.39 cm s−1, respectively. Employing the conductive fabric layer of the actuator with electromagnetic induction effect, the amphibious robot can synchronously perceive environmental EMR with sensitivity up to 99.73% ± 0.15% during locomotion, with superior adaptability to EMR source intensity (0.1 to 3000 W) and distance (≈9 m) compared to a commercial EMR detector. This EMR detective microfiber actuator can inspire a new direction of environment-interactive smart materials, and soft robots with multi-scenario adaptivity and autonomous environment perceptivity.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.