{"title":"电化学点源利用二氧化碳和其他烟道气成分生产高附加值化学品透视","authors":"Soumi Mondal, Sebastian C. Peter","doi":"10.1002/adma.202407124","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) has been explored extensively for mitigation of noxious CO<sub>2</sub> gas generating C<sub>1</sub> and C<sub>2+</sub> hydrocarbons and oxygenates as value-added fuels and chemicals with remarkable selectivity. The source of CO<sub>2</sub> being a pure CO<sub>2</sub> feed, it does not fully satisfy the real-time digestion of industrial exhausts. Besides the detrimental effect of noxious gas mixture leading to global warming, there is a huge capital investment in purifying the flue gas mixtures from industries. The presence of other impurity gases affects the eCO<sub>2</sub>RR mechanism and its activity and selectivity toward C<sub>2+</sub> products dwindle drastically. Impurities like NO<sub>x</sub>, SO<sub>x</sub>, O<sub>2</sub>, N<sub>2</sub>, and halide ions present in flue gas mixture reduce the conversion and selectivity of eCO<sub>2</sub>RR significantly. Instead of wiping out these impurities via separation processes, new strategies from material chemistry and electrochemistry can open new avenues for turning foes to friends! In this perspective, the co-electroreduction will vividly discussed and supporting role of different heteroatom-containing impurity gases with CO<sub>2</sub>, generating highly stable C─N, C─S, C─X bonds, and highlight the existing limitations and providing probable solutions for attaining further success in this field and translating this to industrial exhaust streams.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Perspective on Electrochemical Point Source Utilization of CO2 and Other Flue Gas Components to Value Added Chemicals\",\"authors\":\"Soumi Mondal, Sebastian C. Peter\",\"doi\":\"10.1002/adma.202407124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) has been explored extensively for mitigation of noxious CO<sub>2</sub> gas generating C<sub>1</sub> and C<sub>2+</sub> hydrocarbons and oxygenates as value-added fuels and chemicals with remarkable selectivity. The source of CO<sub>2</sub> being a pure CO<sub>2</sub> feed, it does not fully satisfy the real-time digestion of industrial exhausts. Besides the detrimental effect of noxious gas mixture leading to global warming, there is a huge capital investment in purifying the flue gas mixtures from industries. The presence of other impurity gases affects the eCO<sub>2</sub>RR mechanism and its activity and selectivity toward C<sub>2+</sub> products dwindle drastically. Impurities like NO<sub>x</sub>, SO<sub>x</sub>, O<sub>2</sub>, N<sub>2</sub>, and halide ions present in flue gas mixture reduce the conversion and selectivity of eCO<sub>2</sub>RR significantly. Instead of wiping out these impurities via separation processes, new strategies from material chemistry and electrochemistry can open new avenues for turning foes to friends! In this perspective, the co-electroreduction will vividly discussed and supporting role of different heteroatom-containing impurity gases with CO<sub>2</sub>, generating highly stable C─N, C─S, C─X bonds, and highlight the existing limitations and providing probable solutions for attaining further success in this field and translating this to industrial exhaust streams.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407124\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202407124","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Perspective on Electrochemical Point Source Utilization of CO2 and Other Flue Gas Components to Value Added Chemicals
Electrochemical CO2 reduction reaction (eCO2RR) has been explored extensively for mitigation of noxious CO2 gas generating C1 and C2+ hydrocarbons and oxygenates as value-added fuels and chemicals with remarkable selectivity. The source of CO2 being a pure CO2 feed, it does not fully satisfy the real-time digestion of industrial exhausts. Besides the detrimental effect of noxious gas mixture leading to global warming, there is a huge capital investment in purifying the flue gas mixtures from industries. The presence of other impurity gases affects the eCO2RR mechanism and its activity and selectivity toward C2+ products dwindle drastically. Impurities like NOx, SOx, O2, N2, and halide ions present in flue gas mixture reduce the conversion and selectivity of eCO2RR significantly. Instead of wiping out these impurities via separation processes, new strategies from material chemistry and electrochemistry can open new avenues for turning foes to friends! In this perspective, the co-electroreduction will vividly discussed and supporting role of different heteroatom-containing impurity gases with CO2, generating highly stable C─N, C─S, C─X bonds, and highlight the existing limitations and providing probable solutions for attaining further success in this field and translating this to industrial exhaust streams.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.