空间单位根与虚假回归

IF 6.6 1区 经济学 Q1 ECONOMICS
Econometrica Pub Date : 2024-09-27 DOI:10.3982/ECTA21654
Ulrich K. Müller, Mark W. Watson
{"title":"空间单位根与虚假回归","authors":"Ulrich K. Müller,&nbsp;Mark W. Watson","doi":"10.3982/ECTA21654","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a model for, and investigates the consequences of, strong spatial dependence in economic variables. Our findings echo those of the corresponding “unit root” time series literature: Spatial unit root processes induce spuriously significant regression results, even with clustered standard errors or spatial HAC corrections. We develop large-sample valid unit root and stationarity tests that can detect such strong spatial dependence. Finally, we use simulations to study strategies for valid inference in regressions with persistent spatial data, such as spatial analogues of first-differencing transformations. Regressions from Chetty, Hendren, Kline, and Saez (2014) are used to illustrate the issues and methods.</p>","PeriodicalId":50556,"journal":{"name":"Econometrica","volume":"92 5","pages":"1661-1695"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Unit Roots and Spurious Regression\",\"authors\":\"Ulrich K. Müller,&nbsp;Mark W. Watson\",\"doi\":\"10.3982/ECTA21654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a model for, and investigates the consequences of, strong spatial dependence in economic variables. Our findings echo those of the corresponding “unit root” time series literature: Spatial unit root processes induce spuriously significant regression results, even with clustered standard errors or spatial HAC corrections. We develop large-sample valid unit root and stationarity tests that can detect such strong spatial dependence. Finally, we use simulations to study strategies for valid inference in regressions with persistent spatial data, such as spatial analogues of first-differencing transformations. Regressions from Chetty, Hendren, Kline, and Saez (2014) are used to illustrate the issues and methods.</p>\",\"PeriodicalId\":50556,\"journal\":{\"name\":\"Econometrica\",\"volume\":\"92 5\",\"pages\":\"1661-1695\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrica\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.3982/ECTA21654\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrica","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.3982/ECTA21654","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个经济变量空间依赖性很强的模型,并对其后果进行了研究。我们的研究结果与相应的 "单位根 "时间序列文献不谋而合:空间单位根过程会诱发虚假显著的回归结果,即使使用聚类标准误差或空间 HAC 修正也是如此。我们开发了大样本有效单位根和静止性检验,可以检测出这种强烈的空间依赖性。最后,我们用模拟的方法研究了在有持续空间数据的回归中进行有效推断的策略,如空间类似的第一次差分变换。我们使用 Chetty、Hendren、Kline 和 Saez(2014 年)的回归来说明问题和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Unit Roots and Spurious Regression

This paper proposes a model for, and investigates the consequences of, strong spatial dependence in economic variables. Our findings echo those of the corresponding “unit root” time series literature: Spatial unit root processes induce spuriously significant regression results, even with clustered standard errors or spatial HAC corrections. We develop large-sample valid unit root and stationarity tests that can detect such strong spatial dependence. Finally, we use simulations to study strategies for valid inference in regressions with persistent spatial data, such as spatial analogues of first-differencing transformations. Regressions from Chetty, Hendren, Kline, and Saez (2014) are used to illustrate the issues and methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometrica
Econometrica 社会科学-数学跨学科应用
CiteScore
11.00
自引率
3.30%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics. Econometrica maintains a long tradition that submitted articles are refereed carefully and that detailed and thoughtful referee reports are provided to the author as an aid to scientific research, thus ensuring the high calibre of papers found in Econometrica. An international board of editors, together with the referees it has selected, has succeeded in substantially reducing editorial turnaround time, thereby encouraging submissions of the highest quality. We strongly encourage recent Ph. D. graduates to submit their work to Econometrica. Our policy is to take into account the fact that recent graduates are less experienced in the process of writing and submitting papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信