利用 tRNA 氨基酰化核糖体酶扩大核糖体介导的体外生物合成的范围

IF 2.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Namjin Cho, Haneul Jin, Hyewon Jeon, Kanghun Lee, Joongoo Lee
{"title":"利用 tRNA 氨基酰化核糖体酶扩大核糖体介导的体外生物合成的范围","authors":"Namjin Cho,&nbsp;Haneul Jin,&nbsp;Hyewon Jeon,&nbsp;Kanghun Lee,&nbsp;Joongoo Lee","doi":"10.1002/ijch.202300174","DOIUrl":null,"url":null,"abstract":"<p>Proteins are synthesized within ribosomes through the polymerization of amino acids (AAs). This process requires prior activation of AAs through aminoacylation that attaches them to their corresponding transfer RNAs (tRNAs). Within cells, this attachment is facilitated by aminoacyl-tRNA synthetase, resulting in a tRNA:AA conjugate. A set of ribozymes developed to acylate tRNA with non-canonical substrates enables this process outside the confines of living cells, thereby facilitating the synthesis of novel bio-based products. In modern biotechnology, aminoacylating ribozymes contribute to the production of innovative bio-based materials bearing functional non-canonical chemical substrates (NCSs) and fill the gaps in synthesizing unique polymeric backbones, extending the scope beyond traditional peptide bonds. This review summarizes current understanding of flexizymes at the molecular level and their application in generating exceptional polymeric backbones through ribosome-mediated synthesis <i>in vitro</i>.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 8-9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300174","citationCount":"0","resultStr":"{\"title\":\"Expanding the Scope of Ribosome-Mediated Biosynthesis in vitro using tRNA-Aminoacylating Ribozyme\",\"authors\":\"Namjin Cho,&nbsp;Haneul Jin,&nbsp;Hyewon Jeon,&nbsp;Kanghun Lee,&nbsp;Joongoo Lee\",\"doi\":\"10.1002/ijch.202300174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Proteins are synthesized within ribosomes through the polymerization of amino acids (AAs). This process requires prior activation of AAs through aminoacylation that attaches them to their corresponding transfer RNAs (tRNAs). Within cells, this attachment is facilitated by aminoacyl-tRNA synthetase, resulting in a tRNA:AA conjugate. A set of ribozymes developed to acylate tRNA with non-canonical substrates enables this process outside the confines of living cells, thereby facilitating the synthesis of novel bio-based products. In modern biotechnology, aminoacylating ribozymes contribute to the production of innovative bio-based materials bearing functional non-canonical chemical substrates (NCSs) and fill the gaps in synthesizing unique polymeric backbones, extending the scope beyond traditional peptide bonds. This review summarizes current understanding of flexizymes at the molecular level and their application in generating exceptional polymeric backbones through ribosome-mediated synthesis <i>in vitro</i>.</p>\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"64 8-9\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202300174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300174\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202300174","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质是在核糖体内通过氨基酸(AA)的聚合作用合成的。这一过程需要事先通过氨基酰化激活 AA,使其附着到相应的转移核糖核酸(tRNA)上。在细胞内,氨酰-tRNA 合成酶会促进这种连接,从而产生 tRNA:AA 共轭物。为使 tRNA 与非经典底物酰化而开发的一组核糖酶可在活细胞外实现这一过程,从而促进新型生物基产品的合成。在现代生物技术中,氨基酰化核糖酶有助于生产带有功能性非规范化学底物(NCS)的创新生物基材料,并填补了合成独特聚合物骨架的空白,将范围扩展到传统肽键之外。本综述总结了目前对柔性酶在分子水平上的理解,以及它们在通过核糖体介导的体外合成生成特殊聚合物骨架方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Expanding the Scope of Ribosome-Mediated Biosynthesis in vitro using tRNA-Aminoacylating Ribozyme

Expanding the Scope of Ribosome-Mediated Biosynthesis in vitro using tRNA-Aminoacylating Ribozyme

Proteins are synthesized within ribosomes through the polymerization of amino acids (AAs). This process requires prior activation of AAs through aminoacylation that attaches them to their corresponding transfer RNAs (tRNAs). Within cells, this attachment is facilitated by aminoacyl-tRNA synthetase, resulting in a tRNA:AA conjugate. A set of ribozymes developed to acylate tRNA with non-canonical substrates enables this process outside the confines of living cells, thereby facilitating the synthesis of novel bio-based products. In modern biotechnology, aminoacylating ribozymes contribute to the production of innovative bio-based materials bearing functional non-canonical chemical substrates (NCSs) and fill the gaps in synthesizing unique polymeric backbones, extending the scope beyond traditional peptide bonds. This review summarizes current understanding of flexizymes at the molecular level and their application in generating exceptional polymeric backbones through ribosome-mediated synthesis in vitro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Israel Journal of Chemistry
Israel Journal of Chemistry 化学-化学综合
CiteScore
6.20
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry. The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH. The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信